本申请公开的一种基于平均压缩获取低频信息的对抗样本防御方法,通过第一卷积神经网络模型和第二神经网络模型分别识别对抗样本和根据对抗样本压缩提取的第二低频信息图像,然后综合这两个模型的识别结果,在检测干净的原始测试图像和扰动较小的对抗样本时,第一神经网络模型对于高频信息较为敏感且扰动对结果影响较小,所以此时第一神经网络模型的识别结果更可信,在对抗样本扰动较高时,第二神经网络模型对于高频的扰动不敏感,受到影响较小,且在压缩中会将扰动过滤掉一部分,所以此时第二神经网络模型的识别结果更可信。通过综合这两种结果使在面对对抗样本时正确率得到显著提高,取得了良好的效果。