本发明属于深度学习与图像处理算法技术领域,具体涉及一种应用于Mask Rcnn图像处理算法的网络结构设计与实现及增添边缘损失方法。本发明提出了一种基于Mask Rcnn的农作物图像分割提取算法。首先对Fruits 360数据集进行预处理,利用PyTorch深度学习框架搭建改进Mask Rcnn网络模型构架,在网络设计中增添路径聚合与特征增强功能,优化了区域提取网络和特征金字塔网络。通过ROIAlign中的双线性插值法来保存特征图的空间信息,最后为进一步提高分割掩模边缘精度,在ROI输出的mask分支中增添微全连接层,并使用sobel算子预测目标边缘,在损失函数中加入边缘损失。通过与传统图像提取算法对比实验结果表明,本发明方法性能优异,准确性、鲁棒性和网络的泛化性能均有更优良的表现。