Load sequence simulation method and device
1. A method for load sequence simulation, comprising:
acquiring annual maximum load and annual total electric quantity of a system of a required simulation year;
acquiring historical load data, and counting multi-time scale characteristic parameters and typical daily load curves of historical annual loads according to the historical load data;
obtaining the annual maximum load of the simulated year according to the multi-time scale characteristic parameters of the historical annual load and the annual maximum load of the simulated year;
constructing a preliminary simulation sequence of the simulation year according to the annual maximum load and the typical daily load curve of the simulation year;
calculating the total annual electric quantity of the preliminary simulation sequence of the simulation year, and comparing the total annual electric quantity of the preliminary simulation sequence of the simulation year with the total annual electric quantity of the simulation year to obtain an electric quantity deviation;
and adjusting the preliminary simulation sequence of the simulation year according to the electric quantity deviation to obtain a load simulation sequence of the simulation year in the whole year.
2. The load sequence simulation method of claim 1, wherein the multi-time scale characteristic parameters comprise: the maximum load rate of each month, the maximum load rate of each week in a month excluding holiday weeks, the maximum load rate of each day in a week excluding holiday weeks, and the maximum load rate of each day in a week in which holidays are located.
3. The load sequence simulation method according to claim 2, wherein the counting of the multi-time scale characteristic parameters of the historical year-round loads according to the historical load data specifically comprises:
acquiring annual maximum load and monthly maximum load from the historical load data;
calculating the maximum load rate of each month according to the annual maximum load and the monthly maximum load;
calculating the maximum load rate of each week in the month without the holiday week according to the maximum load of each month and the maximum load of each week without the holiday week;
calculating the maximum load rate of the holiday week according to the maximum load of each month and the maximum load of the holiday week;
calculating the maximum load rate of each day in the week without the holiday week according to the maximum load of each week without the holiday week and the maximum load of each day without the holiday week;
and calculating the maximum load rate of each day of the week of the holiday according to the maximum load of the holiday week and the maximum load of each day of the week of the holiday week.
4. The load sequence simulation method according to claim 3, wherein the obtaining of the annual maximum load of the simulation year from the multi-time scale characteristic parameters of the historical annual loads and the annual maximum load of the simulation year comprises:
calculating the maximum load of each month in the simulation year according to the maximum load rate of each month and the annual maximum load of the simulation year;
calculating the maximum load of each week of the simulated year without the holiday week according to the maximum load rate of each week in the month without the holiday week and the maximum load of each month of the simulated year;
calculating the maximum load of the holiday week of the simulation year according to the maximum load rate of the holiday week and the maximum load of each month of the simulation year;
calculating the maximum load of each day of the simulated year without the holiday week according to the maximum load rate of each day of the week without the holiday week and the maximum load of each week of the simulated year without the holiday week;
calculating the maximum load of each day of the week of the holiday of the simulation year according to the maximum load rate of each day of the week of the holiday and the maximum load of the holiday week of the simulation year;
and obtaining the annual maximum load of the simulated year according to the daily maximum load of the simulated year not including the holiday week and the daily maximum load of the week of the holiday of the simulated year.
5. A method according to claim 3, wherein the maximum load rate for each month is determined according to a formulaAnd calculating to obtain the result, wherein,the load is the highest load of the whole year,the maximum load for each month; r ismThe maximum load rate for each month;
the maximum load rate of each week in the month without holiday week is specifically based on a formulaCalculating to obtain; wherein the content of the first and second substances,the maximum load of each month is taken as the maximum load,the maximum load per week, r, not including holiday weekwThe maximum load rate of each week in the month without the holiday week;
the maximum load rate of the holiday week is specifically determined according to a formulaCalculating to obtain; wherein the content of the first and second substances,the maximum load of each month is taken as the maximum load,to save the maximum load of a false day week, rw_hThe maximum load rate is the holiday week;
the maximum load rate of each day in the week without the holiday week is specifically according to a formulaCalculating to obtain; wherein the content of the first and second substances,to not include the weekly maximum load of the holiday week,the maximum load per day of the holiday week is not included, rdThe maximum load rate of each day in the week without the holiday week;
the maximum load rate of each day of the week of the holiday is specifically determined according to a formulaCalculating to obtain; wherein the content of the first and second substances,for the maximum load on the holiday week,the maximum load of each day of the week of the holiday week, rd_hAs holiday housesThe maximum load rate on each day of the week.
6. A method according to claim 5, wherein the maximum load of each month of the simulation year is based on a formulaCalculating to obtain; wherein r ismIs the maximum load rate of each month,to simulate the annual top load of the year,simulating the maximum load of each month in the year;
the maximum load of each week of the simulation year without the holiday week is specifically according to a formulaCalculating to obtain; wherein r iswFor the maximum load rate of each week in a month not including holiday weeks,in order to simulate the maximum load of each month of the year,the maximum load of each week which is a simulated year and does not include holiday weeks;
the maximum load of the joint and the holiday week of the simulation year is according to a formulaCalculating to obtain; wherein the content of the first and second substances,to simulate the maximum load of the holiday week of the year, rw_hFor the maximum load rate of the holiday week,simulating the maximum load of each month in the year;
the maximum load of each day of the simulated year without the holiday week is according to a formulaCalculating to obtain; wherein the content of the first and second substances,for simulating the daily maximum load of a year without holiday weekdIn order to obtain the maximum load rate of each day in the week excluding the holiday week,the maximum load of each week which is a simulated year and does not include holiday weeks;
the maximum load of each day of the week of the holiday of the simulation year is specifically according to a formulaCalculating to obtain; wherein the content of the first and second substances,the maximum load of each day of the week of the holiday of the simulation year; r isd_hThe maximum load rate of each day of the week on holidays,the maximum load for the holiday week for the year of the simulation.
7. The load sequence simulation method of claim 6, wherein the statistics of a typical daily load curve from the historical load data specifically comprises:
each pair according to the historical load dataThe load curves of seasons and typical holidays are separately counted to obtain the load curve sum of each season and each holidayTypical daily load curve for holidays
8. The load sequence simulation method of claim 7, wherein the annual total charge of the preliminary simulation sequence of the simulation year is based on a formulaCalculating to obtain; wherein the content of the first and second substances,to simulate the maximum load for each day of the year without including holiday weeks,to simulate the maximum load on each day of the week on holidays of the year,is a typical daily load curve of each season,is a typical daily load curve of a holiday.
9. The load sequence simulation method of claim 8, wherein the simulation year all year load simulation sequence is composed ofAndcomposition is carried out; wherein the content of the first and second substances, Δ q is the deviation of the electric quantity,total annual electric quantity, q, of a preliminary analog sequence of said analog yearyThe total annual power of the system for the desired analog year,to simulate the maximum load for each day of the year without including holiday weeks,the maximum load for each day of the week on holidays of the simulated year,is a typical daily load curve of each season,is a typical daily load curve of a holiday.
10. A load sequence simulator, comprising:
the acquisition unit is used for acquiring the annual maximum load and annual total electric quantity of a system of a required simulation year;
the statistical unit is used for acquiring historical load data and carrying out statistics on multi-time scale characteristic parameters and typical daily load curves of historical annual loads according to the historical load data;
a first calculation unit, configured to obtain annual daily maximum loads of the simulation year according to the multi-time scale characteristic parameters of the historical annual loads and the annual maximum loads of the simulation year;
a construction unit, configured to construct a preliminary simulation sequence of the simulation year according to the annual peak load and the typical daily load curve of the simulation year;
the second calculating unit is used for calculating the total annual electric quantity of the preliminary simulation sequence of the simulation year and comparing the total annual electric quantity of the preliminary simulation sequence of the simulation year with the total annual electric quantity of the simulation year to obtain an electric quantity deviation;
and the adjusting unit is used for adjusting the preliminary simulation sequence of the simulation year according to the electric quantity deviation to obtain a load simulation sequence of the simulation year in whole year.
Background
The construction of the load sequence which accords with the historical statistical characteristics is one of the most important data preparation works for the operation simulation of the power system, and whether the constructed load characteristics are consistent with the actual load characteristics or not directly influences the operation simulation result of the power system. Currently, the generation method of such sequences is generally Monte Carlo simulation, and a large number of simulated sequences are generated to make the statistical characteristics of the simulated sequences consistent with the statistical characteristics of historical data. However, because the load sequence data generated by adopting the method has a large quantity, multiple times of power system operation simulation needs to be carried out, and the subsequent results of the power system operation simulation need to be counted, which brings inconvenience to the work of power system planning and the like.
In addition, in actual system operation and planning work, the highest load and electric quantity in the future year are usually predicted, and the predicted values are used as basic conditions for subsequent system analysis. Therefore, it is needed to provide a simple and fast load sequence generation method, which simultaneously satisfies the statistical indexes such as the highest load, the annual electric quantity, and the like, and the characteristics such as the load time distribution rule, so as to serve as the load data boundary of the operation simulation of the power system, be used for the time sequence operation simulation of the power system hourly all the year, and provide a data basis for the operation planning and other works of the power system.
Disclosure of Invention
The embodiment of the invention aims to provide a load sequence simulation method and a load sequence simulation device, which can simply, conveniently and quickly generate a load sequence, simultaneously meet the characteristics of statistical indexes such as the highest load, annual electric quantity and the like, load time distribution rules and the like, serve as a load data boundary of power system operation simulation, are used for time sequence operation simulation of a power system hourly all the year, and provide a data base for work such as power system operation planning and the like.
In a first aspect, an embodiment of the present invention provides a load sequence simulation method, including:
acquiring annual maximum load and annual total electric quantity of a system of a required simulation year;
acquiring historical load data, and counting multi-time scale characteristic parameters and typical daily load curves of historical annual loads according to the historical load data;
obtaining the annual maximum load of the simulated year according to the multi-time scale characteristic parameters of the historical annual load and the annual maximum load of the simulated year;
constructing a preliminary simulation sequence of the simulation year according to the annual maximum load and the typical daily load curve of the simulation year;
calculating the total annual electric quantity of the preliminary simulation sequence of the simulation year, and comparing the total annual electric quantity of the preliminary simulation sequence of the simulation year with the total annual electric quantity of the simulation year to obtain an electric quantity deviation;
and adjusting the preliminary simulation sequence of the simulation year according to the electric quantity deviation to obtain a load simulation sequence of the simulation year in the whole year.
Preferably, the multi-time scale characteristic parameter includes: the maximum load rate of each month, the maximum load rate of each week in a month excluding holiday weeks, the maximum load rate of each day in a week excluding holiday weeks, and the maximum load rate of each day in a week in which holidays are located.
Preferably, the counting of the multi-time scale characteristic parameters of the historical annual load according to the historical load data specifically includes:
acquiring annual maximum load and monthly maximum load from the historical load data;
calculating the maximum load rate of each month according to the annual maximum load and the monthly maximum load;
calculating the maximum load rate of each week in the month without the holiday week according to the maximum load of each month and the maximum load of each week without the holiday week;
calculating the maximum load rate of the holiday week according to the maximum load of each month and the maximum load of the holiday week;
calculating the maximum load rate of each day in the week without the holiday week according to the maximum load of each week without the holiday week and the maximum load of each day without the holiday week;
and calculating the maximum load rate of each day of the week of the holiday according to the maximum load of the holiday week and the maximum load of each day of the week of the holiday week.
Preferably, the obtaining of the annual maximum load of the simulation year according to the multi-time scale characteristic parameters of the historical annual load and the annual maximum load of the simulation year specifically includes:
calculating the maximum load of each month in the simulation year according to the maximum load rate of each month and the annual maximum load of the simulation year;
calculating the maximum load of each week of the simulated year without the holiday week according to the maximum load rate of each week in the month without the holiday week and the maximum load of each month of the simulated year;
calculating the maximum load of the holiday week of the simulation year according to the maximum load rate of the holiday week and the maximum load of each month of the simulation year;
calculating the maximum load of each day of the simulated year without the holiday week according to the maximum load rate of each day of the week without the holiday week and the maximum load of each week of the simulated year without the holiday week;
calculating the maximum load of each day of the week of the holiday of the simulation year according to the maximum load rate of each day of the week of the holiday and the maximum load of the holiday week of the simulation year;
and obtaining the annual maximum load of the simulated year according to the daily maximum load of the simulated year not including the holiday week and the daily maximum load of the week of the holiday of the simulated year.
Preferably, said maximum load rate per month is in particular according to a formulaAnd calculating to obtain the result, wherein,the load is the highest load of the whole year,the maximum load for each month; r ismThe maximum load rate for each month;
the maximum load rate of each week in the month without holiday week is specifically based on a formulaCalculating to obtain; wherein the content of the first and second substances,the maximum load of each month is taken as the maximum load,the maximum load per week, r, not including holiday weekwThe maximum load rate of each week in the month without the holiday week;
the maximum load rate of the holiday week is specifically determined according to a formulaCalculating to obtain; wherein the content of the first and second substances,the maximum load of each month is taken as the maximum load,to save the maximum load of a false day week, rw_hThe maximum load rate is the holiday week;
the maximum load rate of each day in the week without the holiday week is specifically according to a formulaCalculating to obtain; wherein the content of the first and second substances,to not include the weekly maximum load of the holiday week,the maximum load per day of the holiday week is not included, rdThe maximum load rate of each day in the week without the holiday week;
the maximum load rate of each day of the week of the holiday is specifically determined according to a formulaCalculating to obtain; wherein the content of the first and second substances,for the maximum load on the holiday week,the maximum load of each day of the week of the holiday week, rd_hThe maximum load rate of each day of the week on holidays.
Preferably, the maximum load of each month in the simulated year is specifically according to a formulaCalculating to obtain; wherein r ismIs the maximum load rate of each month,to simulate the annual top load of the year,simulating the maximum load of each month in the year;
the maximum load of each week of the simulation year without the holiday week is specifically according to a formulaCalculating to obtain; wherein r iswFor the maximum load rate of each week in a month not including holiday weeks,in order to simulate the maximum load of each month of the year,the maximum load of each week which is a simulated year and does not include holiday weeks;
the maximum load of the joint and the holiday week of the simulation year is according to a formulaCalculating to obtain; wherein the content of the first and second substances,to simulate the maximum load of the holiday week of the year, rw_hFor the maximum load rate of the holiday week,simulating the maximum load of each month in the year;
the maximum load of each day of the simulated year without the holiday week is according to a formulaCalculating to obtain; wherein the content of the first and second substances,for simulating the daily maximum load of a year without holiday weekdIn order to obtain the maximum load rate of each day in the week excluding the holiday week,the maximum load of each week which is a simulated year and does not include holiday weeks;
the maximum load of each day of the week of the holiday of the simulation year is specifically according to a formulaCalculating to obtain; wherein the content of the first and second substances,the maximum load of each day of the week of the holiday of the simulation year; r isd_hThe maximum load rate of each day of the week on holidays,the maximum load for the holiday week for the year of the simulation.
Preferably, the counting a typical daily load curve according to the historical load data specifically includes:
according to the historical load data, separately counting the load curves of each season and typical holidays to obtain the typical daily load curve sum of each seasonTypical daily load curve for holidays
Preferably, the total annual energy of the preliminary simulation sequence of simulation years is specifically according to a formulaCalculating to obtain; wherein the content of the first and second substances,to simulate the maximum load for each day of the year without including holiday weeks,to simulate the maximum load on each day of the week on holidays of the year,is a typical daily load curve of each season,is a typical daily load curve of a holiday.
Preferably, the load simulation sequence simulating the year and the whole year consists ofAndcomposition is carried out; wherein the content of the first and second substances,Δ q is the deviation of the electric quantity,total annual electric quantity, q, of a preliminary analog sequence of said analog yearyThe total annual power of the system for the desired analog year,to simulate the maximum load for each day of the year without including holiday weeks,the maximum load for each day of the week on holidays of the simulated year,is a typical daily load curve of each season,is a typical daily load curve of a holiday.
In a second aspect, an embodiment of the present invention provides a load sequence simulation apparatus, including:
the acquisition unit is used for acquiring the annual maximum load and annual total electric quantity of a system of a required simulation year;
the statistical unit is used for acquiring historical load data and carrying out statistics on multi-time scale characteristic parameters and typical daily load curves of historical annual loads according to the historical load data;
a first calculation unit, configured to obtain annual daily maximum loads of the simulation year according to the multi-time scale characteristic parameters of the historical annual loads and the annual maximum loads of the simulation year;
a construction unit, configured to construct a preliminary simulation sequence of the simulation year according to the annual peak load and the typical daily load curve of the simulation year;
the second calculating unit is used for calculating the total annual electric quantity of the preliminary simulation sequence of the simulation year and comparing the total annual electric quantity of the preliminary simulation sequence of the simulation year with the total annual electric quantity of the simulation year to obtain an electric quantity deviation;
and the adjusting unit is used for adjusting the preliminary simulation sequence of the simulation year according to the electric quantity deviation to obtain a load simulation sequence of the simulation year in whole year.
Compared with the prior art, the load sequence simulation method considering the multi-time scale characteristics directly adopts the historical typical daily load curve to restore the load distribution characteristics, can quickly generate the required load sequence, meets the distribution rule of the sequence in multiple time scales, and statistics such as annual maximum load and annual total electric quantity, and provides a data base for the operation simulation of the power system. Compared with the traditional Monte Carlo simulation method, the method provided by the invention is simple and practical, does not need multiple times of simulation, and is more convenient to apply in actual production operation and system planning.
Drawings
FIG. 1 is a flow chart of a load sequence simulation method according to an embodiment of the present invention;
fig. 2 is a block diagram of a load sequence simulation apparatus according to an embodiment of the present invention.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
Example 1:
referring to fig. 1, an embodiment of the invention provides a load sequence simulation method, including:
s1, acquiring annual maximum load and annual total electric quantity of a system of the required simulation year;
s2, acquiring historical load data, and counting multi-time scale characteristic parameters and typical daily load curves of historical annual loads according to the historical load data;
s3, obtaining the annual maximum load of the simulation year according to the multi-time scale characteristic parameters of the historical annual load and the annual maximum load of the simulation year;
s4, constructing a preliminary simulation sequence of the simulation year according to the annual maximum load of the simulation year and the typical daily load curve;
s5, calculating the total annual electric quantity of the preliminary simulation sequence of the simulation year, and comparing the total annual electric quantity of the preliminary simulation sequence of the simulation year with the total annual electric quantity of the simulation year to obtain electric quantity deviation;
and S6, adjusting the preliminary simulation sequence of the simulation year according to the electric quantity deviation to obtain a load simulation sequence of the simulation year in the whole year.
As an example of the embodiment of the present invention, the multi-time scale characteristic parameter includes: the maximum load rate of each month, the maximum load rate of each week in a month excluding holiday weeks, the maximum load rate of each day in a week excluding holiday weeks, and the maximum load rate of each day in a week in which holidays are located.
In order to fully mine the characteristics of the load on each time scale, the invention defines the relationship between the monthly maximum load, the weekly maximum load, the daily maximum load and the annual maximum load by adopting a load rate mode, thereby obtaining characteristic parameters reflecting multiple time scales in a load year.
Specifically, the counting of the multi-time scale characteristic parameters of the historical year-round load according to the historical load data specifically includes:
acquiring annual maximum load and monthly maximum load from the historical load data;
calculating the maximum load rate of each month according to the annual maximum load and the monthly maximum load;
calculating the maximum load rate of each week in the month without the holiday week according to the maximum load of each month and the maximum load of each week without the holiday week;
calculating the maximum load rate of the holiday week according to the maximum load of each month and the maximum load of the holiday week;
calculating the maximum load rate of each day in the week without the holiday week according to the maximum load of each week without the holiday week and the maximum load of each day without the holiday week;
and calculating the maximum load rate of each day of the week of the holiday according to the maximum load of the holiday week and the maximum load of each day of the week of the holiday week.
In the embodiment of the present invention, it should be noted that, because the load characteristics of the holidays have uniqueness and particularity, in order to better restore the load characteristics, statistics needs to be performed separately for holidays and non-holidays when load characteristic parameter statistics is performed.
As an example of the embodiment of the present invention, the maximum load rate of each month is specifically according to a formulaAnd calculating to obtain the result, wherein,the load is the highest load of the whole year,the maximum load for each month; r ismThe maximum load rate of each month.
For example, the maximum load rate of 3 months is 3 months maximum load/year round maximum load. The maximum load rate of 4 months is 4 months maximum load/annual maximum load.
The maximum load rate of each week in the month without holiday week is specifically based on a formulaCalculating to obtain; wherein the content of the first and second substances,the maximum load of each month is taken as the maximum load,the maximum load per week, r, not including holiday weekwThe maximum load rate of each week in a month excluding holiday weeks.
For example, the 3-month 1-week maximum load rate is 3-month 1-week maximum load/3-month maximum load. The maximum load rate of the 3 month and 2 nd week is 3 month and 2 nd week maximum load/3 month maximum load
The maximum load rate of the holiday week is specifically determined according to a formulaCalculating to obtain; wherein the content of the first and second substances,the maximum load of each month is taken as the maximum load,to save the maximum load of a false day week, rw_hThe maximum load rate is the holiday week.
For example: the maximum load rate of the spring festival in the week is the maximum load of the spring festival in the week/the maximum load of the spring festival in the month. The maximum load rate of the week of the national day festival is the maximum load of the week of the national day festival/the maximum load of the month of the national day festival.
The maximum load rate of each day in the week without the holiday week is specifically according to a formulaCalculating to obtain; wherein the content of the first and second substances,to not include the weekly maximum load of the holiday week,the maximum load per day of the holiday week is not included, rdThe maximum load rate of each day in the week including no holiday week.
For example: the maximum load rate on day 1 of week 1 of month 3 is the maximum load on day 1 of week 1 of month 3/maximum load on day 1 of month 3, and the maximum load rate on day 2 of week 1 of month 3 is the maximum load on day 2 of week 1 of month 3/maximum load on day 1 of month 3.
The maximum load rate of each day of the week of the holiday is specifically determined according to a formulaCalculating to obtain; wherein the content of the first and second substances,for the maximum load on the holiday week,the maximum load of each day of the week of the holiday week, rd_hThe maximum load rate of each day of the week on holidays.
As an example of the embodiment of the present invention, the obtaining of the annual maximum load of the simulation year according to the multi-time scale characteristic parameters of the historical annual load and the annual maximum load of the simulation year specifically includes:
calculating the maximum load of each month in the simulation year according to the maximum load rate of each month and the annual maximum load of the simulation year;
calculating the maximum load of each week of the simulated year without the holiday week according to the maximum load rate of each week in the month without the holiday week and the maximum load of each month of the simulated year;
calculating the maximum load of the holiday week of the simulation year according to the maximum load rate of the holiday week and the maximum load of each month of the simulation year;
calculating the maximum load of each day of the simulated year without the holiday week according to the maximum load rate of each day of the week without the holiday week and the maximum load of each week of the simulated year without the holiday week;
calculating the maximum load of each day of the week of the holiday of the simulation year according to the maximum load rate of each day of the week of the holiday and the maximum load of the holiday week of the simulation year;
and obtaining the annual maximum load of the simulated year according to the daily maximum load of the simulated year not including the holiday week and the daily maximum load of the week of the holiday of the simulated year.
As an example of the embodiment of the present invention, the maximum load of each month in the simulation year is specifically according to a formulaCalculating to obtain; wherein r ismIs the maximum load rate of each month,to simulate the annual top load of the year,the maximum load of each month in the simulated year.
For example, if the maximum load rate of 3 months in 2012 is 0.9, the required simulated year 2013, i.e., the annual maximum load of 2013 in the required forecast year is X watts (the target load, usually forecasted by the dispatching authority), then the maximum load of 3 months in 2013 is 0.9X watts.
The maximum load of each week of the simulation year without the holiday week is specifically according to a formulaCalculating to obtain; wherein r iswFor holiday weeks without nodesThe maximum load rate for each week of the month,in order to simulate the maximum load of each month of the year,the maximum load of each week which is a simulated year and does not include holiday weeks;
the maximum load of the joint and the holiday week of the simulation year is according to a formulaCalculating to obtain; wherein the content of the first and second substances,to simulate the maximum load of the holiday week of the year, rw_hFor the maximum load rate of the holiday week,simulating the maximum load of each month in the year;
the maximum load of each day of the simulated year without the holiday week is according to a formulaCalculating to obtain; wherein the content of the first and second substances,for simulating the daily maximum load of a year without holiday weekdIn order to obtain the maximum load rate of each day in the week excluding the holiday week,the maximum load of each week which is a simulated year and does not include holiday weeks;
the maximum load of each day of the week of the holiday of the simulation year is specifically according to a formulaCalculating to obtain; wherein the content of the first and second substances,the maximum load of each day of the week of the holiday of the simulation year; r isd_hThe maximum load rate of each day of the week on holidays,the maximum load for the holiday week for the year of the simulation.
In step S2, in addition to the multiple time scale characteristic parameters of the statistical load, the 24-hour load distribution characteristics of each day need to be extracted. When a typical daily load curve is counted, in order to better restore the load characteristic, the method carries out refined statistics according to seasons. In addition, the load characteristics of the holidays have uniqueness and particularity, so that the holidays are subjected to independent statistics on spring festival, national day and other holidays when the daily load curve statistics is carried out, and the load characteristics of the holidays are better reduced.
In order to fully simulate the load characteristic differences of load days such as seasons, holidays, and the like, in the embodiment of the present invention, the load curves of the seasons and the typical holidays are separately counted, and then the counting of the load curves of the typical days according to the historical load data specifically includes:
according to the historical load data, separately counting the load curves of each season and typical holidays to obtain the typical daily load curve sum of each seasonTypical daily load curve for holidays
In the embodiment of the present invention, preferably, the typical daily load curve is a typical 24-hour per unit load curve, that is, the hourly loads of each day are converted in the form of per unit values based on the highest load of the day.
The daily maximum load due to the required simulation year and the corresponding typical daily load obtained in step S2The curves together form a preliminary simulation sequence of the required simulation year, so that the annual total electricity quantity of the preliminary simulation sequence of the simulation year can be specifically according to a formulaCalculating to obtain; wherein the content of the first and second substances,to simulate the maximum load for each day of the year without including holiday weeks,to simulate the maximum load on each day of the week on holidays of the year,for the typical daily load curve for each season in question,is a typical daily load curve of the holidays.
Since the load sequence simulation result form adopted in the embodiment of the present invention is the daily maximum load + the per unit value distributed within a day (typical daily load curve), the maximum load value of each day only needs to be finely adjusted. The invention adopts a simple and rapid adjusting mode, and the specific adjusting method comprises the following steps: calculating the annual total electric quantity of the preliminary simulation sequence, and then comparing the annual total electric quantity with a required simulation year (target year) total electric quantity constraint value; the difference between the two is evenly distributed to each day of the whole year, so that the load simulation sequence of the required simulation year (target year) and finally 8740 hours of the whole year can be obtained.
In particular, the load simulation sequence simulating the year and the whole year consists ofAndcomposition is carried out; wherein the content of the first and second substances,Δ q is the deviation of the electric quantity,total annual electric quantity, q, of a preliminary analog sequence of said analog yearyThe total annual power of the system for the desired analog year,to simulate the maximum load for each day of the year without including holiday weeks,the maximum load for each day of the week on holidays of the simulated year,is a typical daily load curve of each season,is a typical daily load curve of a holiday.
The load sequence simulation method considering the multi-time scale characteristics, provided by the embodiment of the invention, can simulate the distribution rule of annual loads on multiple time scales such as months, weeks and days, simultaneously meet the statistics of annual highest loads, annual total electric quantity and the like, can be used for hourly time sequence operation simulation of an electric system all the year around, and provides a data basis for work such as operation planning of the electric system. Compared with the prior art, the method provided by the invention is simple and practical, does not need multiple times of simulation, and is more convenient to apply in actual production operation and system planning.
Referring to fig. 2, in a second aspect, an embodiment of the invention provides a load sequence simulation apparatus, including:
the system comprises an acquisition unit 1, a power supply unit and a power supply unit, wherein the acquisition unit is used for acquiring annual maximum load and annual total electric quantity of a system of a required simulation year;
the statistical unit 2 is used for acquiring historical load data and carrying out statistics on multi-time scale characteristic parameters and typical daily load curves of historical annual loads according to the historical load data;
a first calculating unit 3, configured to obtain annual daily maximum loads of the simulation year according to the multi-time scale characteristic parameters of the historical annual loads and the annual maximum loads of the simulation year;
a construction unit 4 for constructing a preliminary simulation sequence of the simulation year according to the annual peak load and the typical daily load curve of the simulation year;
a second calculating unit 5, configured to calculate a total annual electric quantity of the preliminary simulation sequence of the simulation year, and compare the total annual electric quantity of the preliminary simulation sequence of the simulation year with the total annual electric quantity of the simulation year, so as to obtain an electric quantity deviation;
and the adjusting unit 6 is used for adjusting the preliminary simulation sequence of the simulation year according to the electric quantity deviation to obtain a load simulation sequence of the whole year of the simulation year.
It should be noted that, all or part of the flow in the method according to the above embodiments of the present invention may also be implemented by a computer program instructing related hardware, where the computer program may be stored in a computer-readable storage medium, and when the computer program is executed by a processor, the steps of the above embodiments of the method may be implemented. Wherein the computer program comprises computer program code, which may be in the form of source code, object code, an executable file or some intermediate form, etc. The computer-readable medium may include: any entity or device capable of carrying the computer program code, recording medium, usb disk, removable hard disk, magnetic disk, optical disk, computer Memory, Read-Only Memory (ROM), Random Access Memory (RAM), electrical carrier wave signals, telecommunications signals, software distribution medium, and the like. It should be further noted that the computer readable medium may contain content that is subject to appropriate increase or decrease as required by legislation and patent practice in jurisdictions, for example, in some jurisdictions, computer readable media does not include electrical carrier signals and telecommunications signals in accordance with legislation and patent practice.
While the foregoing is directed to the preferred embodiment of the present invention, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention.