本发明公开了一种书法字体与文字内容同步识别方法及系统,将预处理的书法字体图像集输入到训练好的基于迁移学习的卷积神经网络模型里面,对待识别的中国书法字体与文字内容进行同步识别;卷积神经网络由7个层组成,使用迁移学习技术,固定前三层网络参数,迁移识别书法字体的模型参数识别汉字内容,以实现中国书法字体与文字内容的同步识别,并降低构建模型的时间。通过使用多种高效机器学习技术,包括反向传播算法,基于梯度下降的Adam优化算法,SoftMax回归分类,深度迁移学习网络等技术,成功完成了基于深度迁移学习的模型的训练,以准确实现中国书法字体与文字内容的同步识别,并降低构建模型的时间。