设备健康状态的判断方法及装置
技术领域
本申请涉及终端设备领域,尤其涉及一种设备健康状态的判断方法及装置。
背景技术
目前,相关技术人员主要通过人工手持设备检测、对设备外围进行标准观察、对声音进行采样和查看设备的出厂参数信息与资料等方式对设备的健康状态进行判断。但是,该判断方式只能依靠于相关技术人员的经验进行判断,没有完整精确的评估依据。因此,在设备发生异常的情况下,相关技术人员无法及时得到准确反馈。
发明内容
本申请公开一种设备健康状态的判断方法及装置,以解决在设备发生异常的情况下,相关技术人员无法及时得到准确反馈的问题。
为了解决上述问题,本申请采用下述技术方案:
第一方面,本申请实施例公开一种设备健康状态的判断方法,包括:根据设备的出厂参数,构建所述设备的三维模型;获取所述设备的各个预设位置的实时检测数据;在根据各个所述预设位置的实时检测数据,判断第一位置出现异常的情况下,将所述第一位置对应在所述三维模型上进行标示,其中,所述第一位置为各个所述预设位置中的一个。
第二方面,本申请实施例公开一种设备健康状态的判断装置,包括:构建模块,用于根据设备的出厂参数,构建所述设备的三维模型;获取模块,用于获取所述设备的各个预设位置的实时检测数据;判断模块,用于在根据各个所述预设位置的实时检测数据,判断第一位置出现异常的情况下,将所述第一位置对应在所述三维模型上进行标示,其中,所述第一位置为各个所述预设位置中的一个。
本申请采用的技术方案能够达到以下有益效果:
本申请实施例提供的一种设备健康状态的判断方法,包括:根据设备的出厂参数,构建所述设备的三维模型;获取所述设备的各个预设位置的实时检测数据;在根据各个所述预设位置的实时检测数据,判断第一位置出现异常的情况下,将所述第一位置对应在所述三维模型上进行标示,其中,所述第一位置为各个所述预设位置中的一个。本申请通过构建设备的三维模型,在判断设备的第一位置出现异常的情况下,将第一位置对应在三维模型上进行标示,实现对设备发生异常位置的三维立体化展示,以解决在设备发生异常的情况下,相关技术人员无法及时得到准确反馈的问题。
附图说明
图1为本申请实施例公开的一种设备健康状态的判断方法的流程示意图;
图2为本申请实施例公开的一种设备健康状态的判断装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请实施例公开一种设备健康状态的判断方法,图1为本申请实施例公开的一种设备健康状态的判断方法的流程示意图。
S110、根据设备的出厂参数,构建所述设备的三维模型。
在本申请中,根据设备本身的数据,可以构建出设备的三维模型。具体的,可以根据设备的出厂结构图纸、关键部件及其所在位置等信息构建设备的三维模型。
S120、获取所述设备的各个预设位置的实时检测数据。
具体的,可以在设备的各个预设位置安装传感器,通过传感器获取设备各个预设位置的实时检测数据,其中,设备的各个预设位置为相关领域的技术专家所确定的该设备容易出现故障的位置。进一步的,可以通过在设备的各个预设位置安装加速度传感器,获取各个预设位置的实时振动数据,该实时振动数据可以作为判断对应位置是否出现异常的重要参考指标之一。此外,还可以通过接入厂级监控信息系统(Supervisory informationsystem in plant level,SIS)中的设备数据,获取实时温度数据、实时压力数据及实时位移数据等,通过SIS获取的设备数据可以作为判断设备是否出现异常的重要参考指标之一。
S130、在根据各个所述预设位置的实时检测数据,判断第一位置出现异常的情况下,将所述第一位置对应在所述三维模型上进行标示,其中,所述第一位置为各个所述预设位置中的一个。
在本申请中,在根据各个预设位置的实时检测数据,判断第一位置出现异常的情况下,可以通过不同颜色将第一位置在三维模型上进行标示。不同的颜色可以表示第一位置发生异常的不同严重程度,例如,可以用绿色表示第一位置处于正常状态,蓝色表示第一位置处于轻微异常状态,黄色表示第一位置处于严重异常状态。
进一步的,不同颜色对应的第一位置发生异常的不同严重程度还可以同时在三维模型的下方进行显示,并且显示内容还包括第一位置的实时检测数据。
本申请实施例提供的一种设备健康状态的判断方法,包括:根据设备的出厂参数,构建所述设备的三维模型;获取所述设备的各个预设位置的实时检测数据;在根据各个所述预设位置的实时检测数据,判断第一位置出现异常的情况下,将所述第一位置对应在所述三维模型上进行标示,其中,所述第一位置为各个所述预设位置中的一个。本申请通过构建设备的三维模型,在判断设备的第一位置出现异常的情况下,将第一位置对应在三维模型上进行标示,实现对设备发生异常位置的三维立体化展示,以解决在设备发生异常的情况下,相关技术人员无法及时得到准确反馈的问题。
在本申请实施例中,所述实时检测数据可以包括:实时振动数据;判断所述第一位置出现异常,包括:在所述设备的所述第一位置对应的第一实时振动数据大于第一阈值且持续时间大于第二阈值的情况下,判断所述第一位置出现异常。以设备中转速为3000r/min的电机为例,在该电机处于正常状态时,轴上测量的振动数据一般为20-50um,在该电机处于轻微异常状态下,轴上测量的振动数据一般为51-80um,在该电机处于严重异常状态下,轴上测量的振动数据一般为81um以上,也就是说,在该电机对应的实时振动数据大于51um,并且持续时间大于第二阈值的情况下,可以认为是一种常态,判断该电机出现异常,其中,第二阈值可以为5分钟。
在本申请中,第一阈值和第二阈值的大小可以根据实际情况进行确定,本申请不对第一阈值和第二阈值的数值大小作出具体限定。
由于振动可能会导致温度升高,因此,在进一步的技术方案中,所述实时检测数据可以包括:实时温度数据;判断所述第一位置出现异常,包括:在所述设备的所述第一位置对应的所述第一实时振动数据不大于第一阈值,或者,所述设备的所述第一位置对应的所述第一实时振动数据大于第一阈值但持续时间不大于第二阈值时,若所述第一位置的实时温度数据大于第三阈值,则判断所述第一位置出现异常。也就是说,在第一位置对应的第一实时振动数据不大于第一阈值的情况下,若第一位置的实时温度数据大于第三阈值,则判断第一位置出现异常,或者,在第一位置对应的第一实时振动数据大于第一阈值但持续时间不大于第二阈值的情况下,若第一位置的实时温度数据大于第三阈值,则判断第一位置出现异常。在本申请中,第三阈值的大小可以根据实际情况进行确定,本申请不对第三阈值的数值大小作出具体限定。
在本申请实施例中,还可以包括:将所述实时检测数据接入专家知识库,确定针对所述异常的诊断结果。也就是说,在设备的第一位置出现异常的情况下,将第一位置对应的实时检测数据接入专家知识库,通过专家知识库可以确定针对设备的第一位置的异常的诊断结果。专家知识库中包括各种有规律可寻的异常表现及同行业技术交流结论的汇总,只要将实时检测数据接入专家知识库中,进行大数据智能化计算,就可以得出该异常对应的问题反馈。
本申请实施例公开的设备健康状态的判断方法还可以包括:收集多组出现异常的所述第一位置在出现异常时的实时检测数据;通过对多组所述实时检测数据进行可视化分析,确定所述第一位置的异常发生频率。具体的,可以收集第一位置在一段时间内的多组实时检测数据至数据中心,该段时间内的多组实时检测数据包括多组出现异常的第一位置在出现异常时的实时检测数据,然后通过对该段时间内收集的多组实时检测数据进行可视化分析,确定第一位置的异常发生频率。而异常发生频率的确定可以对异常问题的预知性判断提供重要参考价值,在下一次异常发生之前,可以通过异常发生频率对相关技术人员进行示警。
在本申请中,可以通过折线图、曲线图、时域图、频谱图、瀑布图等对多组实时检测数据进行可视化分析,对多组实时检测数据进行可视化分析的图形也可以显示在设备的三维模型所在的页面上,使得相关技术人员可以更加直观、清晰地对设备的健康状态进行判断。
一种可能实现的方式中,本申请实施例公开的设备健康状态的判断方法还可以包括:在预设周期到达时以及出现异常时,对所述设备进行巡检,记录巡检数据。也就是说,在固定时间周期内,需要人工手持相关仪器对设备进行巡检,并记录巡检数据,在设备出现异常时,也需要人工手持相关仪器对设备进行巡检,并记录巡检数据。在设备出现异常的情况下,记录的两类巡检数据可以给相关技术人员提供参考。其中,巡检的对象可以包括设备周边的温度、噪音、污渍以及设备外围物体是否与设备有交叉等。
在本申请实施例中,本申请实施例公开的设备健康状态的判断方法还可以包括:在所述三维模型所在的页面上显示检测结果数据,其中,所述检测结果数据包括所述实时检测数据、异常发生频率和巡检数据。也就是说,实时检测数据、异常发生频率和巡检数据等设备的相关数据均可以显示在设备的三维模型所在的页面上,更加直观的显示设备当前的状态。
图2为本申请实施例公开的一种设备健康状态的判断装置的结构示意图。如图2所示,设备健康状态的判断装置200包括构建模块210、获取模块220和判断模块230。
在本申请中,构建模块210,用于根据设备的出厂参数,构建所述设备的三维模型;获取模块220,用于获取所述设备的各个预设位置的实时检测数据;判断模块230,用于在根据各个所述预设位置的实时检测数据,判断第一位置出现异常的情况下,将所述第一位置对应在所述三维模型上进行标示,其中,所述第一位置为各个所述预设位置中的一个。
在一种实现方式中,所述实时检测数据包括:实时振动数据;所述判断模块230判断所述第一位置出现异常,包括:在所述设备的所述第一位置对应的第一实时振动数据大于第一阈值且持续时间大于第二阈值的情况下,判断所述第一位置出现异常。
在一种实现方式中,所述实时检测数据包括:实时温度数据;所述判断模块230判断所述第一位置出现异常,包括:在所述设备的所述第一位置对应的所述第一实时振动数据不大于第一阈值,或者,所述设备的所述第一位置对应的所述第一实时振动数据大于第一阈值但持续时间不大于第二阈值时,若所述第一位置的实时温度数据大于第三阈值,则判断所述第一位置出现异常。
在一种实现方式中,还包括:确定模块,用于将所述实时检测数据接入专家知识库,确定针对所述异常的诊断结果。
在一种实现方式中,所述判断模块230还用于:收集多组出现异常的所述第一位置在出现异常时的实时检测数据;通过对多组所述实时检测数据进行可视化分析,确定所述第一位置的异常发生频率。
在一种实现方式中,还包括:巡检模块,用于在预设周期到达时以及出现异常时,对所述设备进行巡检,记录巡检数据。
在一种实现方式中,还包括:显示模块,用于在所述三维模型所在的页面上显示检测结果数据,其中,所述检测结果数据包括所述实时检测数据、异常发生频率和巡检数据。
本申请实施例提供的该装置200,可执行前文方法实施例中所述的各方法,并实现前文方法实施例中所述的各方法的功能和有益效果,在此不再赘述。
本申请上文实施例中重点描述的是各个实施例之间的不同,各个实施例之间不同的优化特征只要不矛盾,均可以组合形成更优的实施例,考虑到行文简洁,在此则不再赘述。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。