本发明公开了一种基于AP-NAG算法的复值神经网络信道均衡器设计方法,包括以下步骤:将从非线性信道中采集的畸变信号y(n)作为复值神经网络的输入,将延时τ个单位的原始输入信号s(n-τ)作为期望输出,将复值神经网络的实际输出和期望输出的均方误差作为损失函数;B、采用AP-NAG算法训练复值神经网络,直至将损失函数值降低到预设值以下;C、将训练之后的复值神经网络模型作为信道均衡器。本发明解决了NAG算法用于复值神经网络训练的理论问题,并使其参数能自适应调整,实现了复值神经网络的高效训练,相对于传统的一阶优化算法性能有了明显提升,收敛速度更快。相对于二阶优化算法,本算法的计算量和存储量更小,但是收敛速度并不逊色。