一种基于bme-gwr的水系沉积物地球化学异常制图方法

文档序号:8021 发布日期:2021-09-17 浏览:42次 英文

一种基于BME-GWR的水系沉积物地球化学异常制图方法

技术领域

本发明涉及图像处理

技术领域

,尤其是涉及一种基于BME-GWR的水系沉积物地球化学异常制图方法。

背景技术

地球化学异常识别方法是地球化学勘查研究的热点之一,综合信息集成、融合与矿化相关的数据信息是解决覆盖区地球化学信息缺失和不完整问题的有效途径之一,对开展地球化学异常信息识别具有重要的意义。传统的异常识别方法仅依赖地球化学数据进行异常识别,常常不能得到满意的结果。水系沉积物地球化学元素的异常分布受到表层地球化学景观的影响,因此融合水系沉积物地球化学数据和地形影响因子等信息进行地球化学异常识别对地球化学勘查具有重要意义。贝叶斯最大熵(Baysian Maximun Entropy,BME)方法是一种以时空随机场理论为基础的时空分析与成图方法,能够综合利用同一研究区的不同时期、不同精度的地球化学数据和影响地球化学元素分布的高程、坡度等地球化学景观因子,有效提高预测精度(Christakos,1990;1992)。地球化学异常分布受到多种相互制约因素的影响,把地形因子数据和平均降雨量等作为地球化学异常识别的辅助数据,可以弥补地球化学数据局部缺失数据的问题,从而提高预测的精度,降低地球化学异常识别的不确定性。因此,将BME方法应用于地球化学异常信息识别,可以为地球化学异常的识别和评价提供新思路。

发明内容

本发明的目的是提供一种基于BME-GWR的水系沉积物地球化学异常制图方法,提高了水系沉积物地球化学异常的识别精度和降低了不确定性。

为实现上述目的,本发明提供了一种基于BME-GWR的水系沉积物地球化学异常制图方法,包括以下步骤:

(1)基于ASTGTM2 DEM数据提取地形因子,地形因子包括坡度、坡向和地形起伏度信息;

(2)基于GWR方法对提取的地形因子和研究区平均降雨量信息构建研究区的概率型软数据模型;

(3)以1:20万水系沉积地球化学数据为硬数据,基于BME方法对建立的概率型软数据模型和硬数据识别研究区水系沉积物地球化学异常;

(4)对识别的水系沉积物地球化学异常与普克里格插值结果对比,并进行插值精度和不确定性评价。

优选的,所述基于ASTGTM2 DEM数据提取地形因子包括坡度、坡向和地形起伏度信息,包括以下步骤:

基于ArcGIS对下载的DEM数据进行镶嵌融合,裁剪出研究区范围一致的DEM数据,提取坡度、坡向和地形起伏度的因子信息,并依据坡向对水系沉积物的影响程度进行分类,从小到大为315°-360°和0°-45°,45°-135°和225°-315°,135°-225°并依次赋予0-1的权重,据此对其做归一化处理,得到归一化的影响因子。

优选的,基于GWR方法对提取的地形因子和研究区平均降雨量信息构建研究区的概率软数据模型,包括以下步骤:

首先依据降雨量对水系沉积物异常的影响程度,对其归一化处理;

其次基于GWR方法对提取的地形因子和研究区平均降雨量信息获取研究区的局部平均预测值,并依据预测值与实际测量值之间的差的平方作为概率软数据的方差,得到概率软数据的均值和方差。

优选的,以1:20万水系沉积地球化学数据为硬数据,基于BME方法对建立的概率型软数据模型和硬数据计算未采样点的概率密度分布函数,并以均值分布作为未采样点的估计值,最终预测研究区水系沉积物地球化学异常空间分布。

优选的,对识别的水系沉积物地球化学异常与普通克里格结果对比,计算二者估计值的均值、平均绝对误差、均方根误差,并计算估计值与实测数据的相关性,进行估计结果的不确定性评价。

一种电子设备,包括存储器、处理器以及存储在所述存储器中并在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现了上述一种基于BME-GWR的水系沉积物地球化学异常制图方法的步骤。

一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现了上述的一种基于BME-GWR的水系沉积物地球化学异常制图方法的步骤。

因此,本发明采用上述结构的一种基于BME-GWR的水系沉积物地球化学异常制图方法,提高了水系沉积物地球化学异常的识别精度和降低了不确定性。

下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。

附图说明

图1是一种基于BME-GWR的水系沉积物地球化学异常制图方法的流程图;

图2是基于ASTGTM2 DEM遥感数据提取的坡度、坡向、地形起伏度和平均降雨量分布图;

图3是提取的坡度、坡向、地形起伏度和平均降雨量归一化分布图;

图4是基于归一化的坡度、坡向、地形起伏度和平均降雨量的GWR预测分布图;

图5是基于BME和普通克里格(OK)对研究区Mo元素含量空间分布图;

图6是BME和普通克里格(OK)预测值与测量数据相关系数图一;

图7是BME和普通克里格(OK)预测值与测量数据相关系数图二。

具体实施方式

以下通过附图和实施例对本发明的技术方案作进一步说明。

本发明提供了一种基于BME-GWR的水系沉积物地球化学异常制图方法,包括以下步骤:

(1)基于ASTGTM2 DEM数据提取地形因子,地形因子包括坡度、坡向和地形起伏度信息,包括以下步骤:

基于ArcGIS对下载的DEM数据进行镶嵌融合,裁剪出研究区范围一致的DEM数据,提取坡度、坡向和地形起伏度的因子信息,并依据坡向对水系沉积物的影响程度进行分类,从小到大为315°-360°和0°-45°,45°-135°和225°-315°,135°-225°并依次赋予0-1的权重,据此对其做归一化处理,得到归一化的影响因子。

(2)基于GWR方法对提取的地形因子和研究区平均降雨量信息构建研究区的概率型软数据模型,包括以下步骤:

首先依据降雨量对水系沉积物异常的影响程度,对其归一化处理;

其次基于GWR方法对提取的地形因子和研究区平均降雨量信息获取研究区的局部平均预测值,并依据预测值与实际测量值之间的差的平方作为概率软数据的方差,得到概率软数据的均值和方差。

(3)以1:20万水系沉积地球化学数据为硬数据,基于BME方法对建立的软数据模型和硬数据计算未采样点的概率密度分布函数,并以均值分布作为未采样点的估计值,最终预测研究区水系沉积物地球化学异常空间分布;

(4)对识别的水系沉积物地球化学异常与普通克里格(OK)结果对比,计算二者估计值的均值、平均绝对误差、均方根误差,并计算估计值与实测数据的相关性,进行估计结果的精度和不确定性评价。

一种电子设备,包括存储器、处理器以及存储在所述存储器中并在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现了上述一种基于BME-GWR的水系沉积物地球化学异常制图方法的步骤。

一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现了上述的一种基于BME-GWR的水系沉积物地球化学异常制图方法的步骤。

如图1所示,一种基于BME-GWR的水系沉积物地球化学异常制图方法包括如下步骤:

S110:先验阶段:基于最大熵的先验PDF计算。

基于最大熵原理,就是在所提供数据有限或概率空间不完备的情况下,在估计随机变量的概率分布时,选择出具有最大熵的一种概率分布,作为估计的先验结果。在先验阶段将定性的知识转化为定量的数学约束,找出包含信息量最大的先验分布,保证将最丰富的先验信息融入估计过程中。假设随机变量Xmap=(x1,x2,...,xm,xk),其对应的空间坐标为[p1,p2,...,pm,pk],xk表示某个待估点pk上的值,fG(Xmap)表示Xmap的PDF。信息熵计算公式为:

H[Xmap,fG(Xmap)]=-∫ln[fG(Xmap)]fG(Xmap)dXmap (1)

其中式(1)在约束条件下取得最大值,约束条件的通式可表示为:

E[gα]=∫gα(Xmap)fG(Xmap)dXmap (2)

gα(Xmap)关于Xmap的某已知函数常,约束条件个数α=[1,2,…,Nc]与Xmap总个数(m+1)有关,常使用的gα(Xmap)形式为归一化约束、数学期望约束、方差约束、协方差约束、以及与变异函数模型和多点地统计约束等。

S120:后验阶段,基于贝叶斯的后验PDF计算。

基于地理加权回归的软数据模型构建:软数据一般与估计的目标变量具有不同程度的相关性,蕴藏着丰富的信息。本实施例选取的离散型变量主要为坡向数据,根据对水系沉积物次生晕形成的影响程度,权重从小到大为315°-360°和0°-45°,45°-135°和225°-315°,135°-225°,依次赋予0-1内的权重值;连续型变量中的和平均降雨量数据等,坡度和地形起伏度通过ASTGTM2 DEM遥感数据获取。本发明基于地理加权回归方法构建概率软数据,

其中u为某待预测点位,q为k×1的矩阵,k为辅助变量个数,表示线性回归系数,其计算公式为

其中W(u)为u处的n×n权重矩阵,由点之间距离d的函数

w(uu′)=exp(-d2/2b2)计算,权重n为距离b邻域内的建模点个数,z(n)即表示该邻域内的属性值,为n×1的向量。σGWR(u)为标准差,计算公式为:

为均方差。

计算未测点后验PDF。

变量X在预测位置pk上的后验PDF为:

其中,xhard=[x1,x2,...,xh],xsoft=[xh+1,xh+2,...,xm],h,m-h分别为待预测点周围一定范围内硬数据和软数据个数。

S130:地球化学异常信息识别评价阶段。

得到的后验PDF一般为非高斯分布,可以描述未知点位置属性的完全分布特征。根据不同的制图目的,可提取不同的值赋予每个点作为地球化学图件中的像素值,如BME众数估计,表示最可能出现的预测值;BME均值估计,表示具有最小均方估计误差的预测值;BME中值估计,表示具有最小平均绝对误差的预测值。根据本发明的目的,选择BME均值估计作为地球化学估计值,进行地球化学异常识别。

后验概率的方差度量预测精度:

此方差对应于估计方差误差,依赖于选取的软数据和硬数据集,当后验概率分布不复杂时,可以度量分布函数的预测精度,当后验PDF分布较复杂时,使用置信域度量预测精度较为理想。

实施例

本实施例是以内蒙集宁覆盖区为研究区,研究区的1:20万地球化学数据为硬数据,分别基于ASTGTM2 DEM提取研究区的坡度、坡向和地形起伏度数据和收集的研究区的平均降雨量数据进行预处理,根据对水系沉积物次生晕形成的影响程度,坡向权重从小到大为315°-360°和0°-45°,45°-135°和225°-315°,135°-225°,依次赋予0-1内的权重值。对坡度和平均降雨量数据进行归一化处理,得到研究区水系沉积物地形和气候影响因子的归一化空间分布。基于地理加权回归方法构建上述变量的概率型软数据。以1:20万水系沉积地球化学数据为硬数据,基于BME方法对建立的软数据模型和硬数据计算未采样点的概率密度分布函数,并以均值分布作为未采样点的估计值,最终预测研究区水系沉积物地球化学异常空间分布。

对识别的水系沉积物地球化学异常与普通克里格(OK)结果对比,二者识别异常的空间分布趋势相似,但BME抑制了一些地形或平滑导致的假异常,揭露了一些局部异常和覆盖层下的弱异常分布。计算二者估计值的均值、平均绝对误差、均方根误差,基于BME的预测结果的平均绝对误差、均方根误差更小,且散点图显示BME估计值与实测数据的相关性更好,表明融入地形因子和气候因子识别的水系沉积物异常的预测结果不确定性较低,精度较高。

结合图1,得到计算流程图。

结合图2,经过步骤(1)得到平均降雨量和基于ASTGTM2 DEM提取的坡度、坡向和地形起伏度空间分布。

结合图3,对步骤(1)提取的平均降雨量和基于ASTGTM2 DEM提取的坡度、坡向和地形起伏度归一化空间分布。

结合图4,经过步骤(2)GWR获取的软数据均值分布。

结合图5,经过步骤(3)获取基于BME和OK的研究区水系沉积物异常分布。

结合图6和图7,经过步骤(4)得到BME和OK的预测值与观测值的散点图。

结合表1,经过步骤(4)得到BME和OK的预测值交叉验证参数表。

表1

该实施例的终端设备包括:处理器、存储器以及存储在所述存储器中并可在所述处理器上运行的计算机程序。所述处理器执行所述计算机程序时实现上述方法实施例中的步骤,例如图1所示的步骤S110至S130。

本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-OnlyMemory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。

因此,本发明采用上述结构的一种基于BME-GWR的水系沉积物地球化学异常制图方法,提高了水系沉积物地球化学异常的识别精度和降低了不确定性。

最后应说明的是:以上实施例仅用以说明本发明的技术方案而非对其进行限制,尽管参照较佳实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对本发明的技术方案进行修改或者等同替换,而这些修改或者等同替换亦不能使修改后的技术方案脱离本发明技术方案的精神和范围。

完整详细技术资料下载
上一篇:石墨接头机器人自动装卡簧、装栓机
下一篇:一种电力二次屏柜电气原理图全要素建模和图模转化方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类