基于图像特征信息的精密工件台倾角检测方法
技术领域
本发明属于工件台倾角检测
技术领域
,更为具体地讲,涉及一种基于图像 特征信息的精密工件台倾角检测方法。背景技术
对于很多精密器材而言,调整工件台至水平状态是进行后续操作前的关键 步骤。如光刻机工件台,若未将工件台调整至水平状态,则硅片表面与投影物 镜焦面将会处于非平行状态,对硅片的刻蚀精度造成严重影响,芯片制造产品 的质量和成品率也会随之下降。同时,机械中常见的测量平面度的方法,如打 表测量法、光束平面法等方法往往有自身的测量局限性,且测量精度不高。
发明内容
本发明的目的在于克服现有技术的不足,提供一种基于图像特征信息的精 密工件台倾角检测方法,利用图像特征信息完成倾角检测,可以提高检测精度, 同时操作也更为简便。
为实现上述发明目的,本发明基于图像特征信息的精密工件台倾角检测方 法包括以下步骤:
S1:预先将标定物放置于处于水平状态下的精密工作台上并进行图像采集 得到标准图,然后在精密工作台需要进行倾角检测时,将标定物放置于精密工 作台上并进行图像采集得到当前的采样图;
S2:分别对标准图和采样图进行特征点提取与匹配,获取特征点对集合;
S3:从标准图和采样图的特征点对集合中选取三对特征点对,记各个特征 点在所在图像中的坐标分别为i=0表示该特 征点属于标准图,i=1表示该特征点属于采样图;
S4:根据步骤S3所得到的三对特征点对计算精密工作台的倾角,包括以下 步骤:
S4.1:分别将三对特征点对中属于标准图和采样图的三个特征点作为顶点组 成特征三角形ΔA0B0C0、ΔA1B1C1,然后分别计算特征三角形的边长 和
S4.2:以采样图的平面直角坐标系原点为原点、以采样图为水平面建立空间 直角坐标系,将特征三角形ΔA0B0C0进行移动令特征点A0与特征点A1重合,然后 在特征点A0固定条件下对特征三角形ΔA0B0C0进行缩放得到特征三角形令特征三角形在水平面的垂直投影为特征三角形ΔA1B1C1, 分别表示特征三角形ΔA0B0C0进行移动、缩放后特征点A0、特征点B0和 特征点C0所对应的点,将缩放倍数x作为未知参数,构建如下方程组:
其中,表示点相对于水平面的高度值,表示点相对于水平面 的高度值;
求解上述方程组,得到两组高度值,分别记为
S4.3:分别采用两组高度值计算得到两组精密工作台倾角,计算方法如下:
记当前所采用的高度值为k=1,2,采样图中特征三角形ΔA1B1C1中三个特征点在所建立的空间直角坐标系中的坐标分别为 则特征三角形中三个特征点在空间直角坐标系中的坐标分别为
在空间直角坐标系中,计算垂直于标准图特征三角形所在平面的法向量根据法向量计算得到精密工作台在空间直角坐标 系中在x轴方向上的倾角和在y轴方向上的倾角
本发明基于图像特征信息的精密工件台倾角检测方法,预先将标定物放置 于处于水平状态下的精密工作台上并进行图像采集得到标准图,然后在精密工 作台需要进行倾角检测时,将标定物放置于精密工作台上并进行图像采集得到 当前的采样图,分别对标准图和采样图进行特征点提取与匹配,获取特征点对 集合,从标准图和采样图的特征点对集合中选取三对特征点对,按照所设计的 倾角计算方法计算得到精密工作台的倾角。
本发明利用获取的图像信息完成了非接触式的精密工作台倾角检测,可以 有效节约结构硬件成本,并提出了新的倾角计算方法,提高了精密工作台倾角 检测的准确度。
附图说明
图1是本发明基于图像特征信息的精密工件台倾角检测方法的具体实施方 式流程图;
图2是本实施例中特征点对选取方法的流程图;
图3是本发明中采样图和标准图在三维空间中的位置关系图;
图4是本发明中精密工作台的倾角计算的流程图;
图5是采样图和标准图的相对位置示意图;
图6是标准图中特征三角形缩放的示意图;
图7是图6所示特征三角形的法向量示意图;
图8是本实施例中采样图和标准图中特征三角形示例图。
具体实施方式
下面结合附图对本发明的具体实施方式进行描述,以便本领域的技术人员 更好地理解本发明。需要特别提醒注意的是,在以下的描述中,当已知功能和 设计的详细描述也许会淡化本发明的主要内容时,这些描述在这里将被忽略。
实施例
图1是本发明基于图像特征信息的精密工件台倾角检测方法的具体实施方 式流程图。如图1所示,本发明基于图像特征信息的精密工件台倾角检测方法 的具体步骤包括:
S101:图像采集:
预先将标定物放置于处于水平状态下的精密工作台上并进行图像采集得到 标准图,然后在精密工作台需要进行倾角检测时,将标定物放置于精密工作台 上并进行图像采集得到当前的采样图。
S102:特征点匹配:
分别对标准图和采样图进行特征点提取与匹配,获取特征点对集合。
本实施例中在进行标准图和采样图进行特征点提取之前,可以先对两幅图 像进行预处理,例如滤波锐化等,然后对预处理后的两幅图像使用ORB(Oriented Fast andRotated Brief)算子进行特征点提取,并使用FLANN(Fast Approximate NearestNeighbor Search Library,快速最近邻逼近搜索函数库)算法完成特征点 的匹配工作。
S103:特征点对选取:
从标准图和采样图的特征点对集合中选取三对特征点对,记各个特征点在 所在图像中的坐标分别为i=0表示该特征点 属于标准图,i=1表示该特征点属于采样图。
为了使最终检测得到的精密工作台倾角更加准确,用于倾角计算的特征点 对最好满足以下两点:一是根据三角形两边之和大于第三边的定理设计筛选算 法,同时为提高倾角计算精度,应规避钝角角度接近于平角的三角形情况;二 是特征点对之间的距离不能相距太近,因为这种情况计算特征三角形的顶点会 影响倾角数值计算的精度。综上所述,设计得到本实施例的特征点对选取方法。 图2是本实施例中特征点对选取方法的流程图。如图2所示,本实施例中特征 点对选取的具体方法如下:
S201:特征点对排列:
记特征点对集合中特征点对数量为N,将N对特征点对按照其两个特征点 的匹配度从大到小进行排列。
S202:确定特征点对A:
从排列后的特征点对序列中选取第1对特征点对作为特征点对A。
S203:令n=2。
S204:判断第n对特征点对与特征点对A之间的距离dnA是否大于预设的边 长阈值D,如果不是,进入步骤S205,否则进入步骤S206。
S205:令n=n+1,返回步骤S204。
S206:确定特征点对B:
将当前特征点对作为特征点对B。
S207:令n′=n+1;
S208:判断第n′对特征点对是否满足特征点对C的条件,即是否同时满足以 下三个条件:第n′对特征点对与特征点对A之间的距离dn′A大于预设的边长阈值 D,第n′对特征点对与特征点对B之间的距离dn′B大于预设的边长阈值D, dn′A+dn′B-dA,B>P,其中dA,B表示特征点对A与特征点对B之间的距离,P为预 设的阈值,如果不满足,进入步骤S209,否则进入步骤S210。
S209:令n′=n′+1,返回步骤S208。
S210:确定特征点对C:
将当前特征点对作为特征点对C。
S104:计算倾角:
根据步骤S103所得到的三对特征点对计算精密工作台的倾角。
已知不共线的三点确定一个平面,由此得到了定位平面的一个方法,即最 少通过三个不在一条线的点的空间直角坐标系的坐标可定位唯一的一个平面。 本发明中以采样图作为水平面,标准图作为倾斜面。图3是本发明中采样图和 标准图在三维空间中的位置关系图。如图3所示,由这六个点在空间直角坐标 系中的坐标值,再结合空间立体几何的相关知识,可求得倾斜面A0B0C0的法向 量,即对倾斜面进行了表征,从而得到精密工作台的倾角。
图4是本发明中精密工作台的倾角计算的流程图。如图4所示,本发明中 精密工作台的倾角计算的具体步骤包括:
S401:确定特征三角形:
分别将三对特征点对中属于标准图和采样图的三个特征点组成特征三角形 ΔA0B0C0、ΔA1B1C1,然后分别计算特征三角形的边长和
S402:计算特征三角形顶点高度:
以采样图的平面直角坐标系原点为原点、以采样图为水平面建立空间直角 坐标系,然后计算标准图中特征三角形顶点的相对于水平面的高度。
如图3所示,步骤S103得到了各个特征点在各自图像的二维直角坐标系下 的坐标,进而计算得到两个特征三角形在各自图像中的三边长度。将采样图中 特征三角形△A1B1C1和标准图中特征三角形△A0B0C0平移至同一空间直角坐标系 下,且令两个特征三角形中特征点对A的两个特征点相交。图5是采样图和标准 图的相对位置示意图。如图5所示,采样图和标准图的相对位置有如图5(a)、图 5(b)、图5(c)、图5(d)所示的四种情况。为便于观察,为采样图和标准图添加虚 线以表征该平面。根据图像采集的原理可知,△A1B1C1是△A0B0C0在水平面的垂 直投影。分别为特征点B0、特征点C0相对于水平面上的特征点B1、 特征点C1的高度,其中箭头方向表示倾斜面在该点处相对于水平面的高度方向,箭头方向朝上表示此点高度位于水平面之上,箭头方向朝下表示此点高度位于 水平面之下。
通过图5可以发现,在特征点A0、A1重合的条件下,采样图和标准图在空 间中的位置关系总体上可以分为两种情况。第一种情况是在空间直角坐标系中, 特征点A1(A0)在竖直方向上的高度位置在特征点B1、特征点C1的同侧(见图5(a)、 图5(b)),第二种情况是特征点A1(A0)在竖直方向上的高度位置在特征点B1、特 征点C1高度位置之间(见图5(c)、图5(d))。其中情况一又分为图5(a)的特征点 A1(A0)同时高于特征点B1、特征点C1,以及图5(b)的特征点A1(A0)同时低于特 征点B1、特征点C1点的这两种情形。情况二分为图5(c)的特征点C0是最高点, 以及图5(d)的特征点B0是最高点的这两种情形。
在实际的图像采集过程中,因为工件台处于倾斜状态与水平状态时,放置 其上的标定物与光电传感器之间的距离发生了变化,导致标定物上相同的两个 特征点之间在图像上的像素距离也发生变化,也就是说,标准图上特征点B0或 特征点C0的垂直投影有可能并不落在采样图上的特征点B1或特征点C1上,这将 严重影响倾角计算的结果。然而虽然两点间的像素距离发生了变化,但特征点 所确定的三角形三边长度的比例是固定的,可以通过将标准图的三角形在同一 平面内缩小或放大一定的比例以保证其三点的垂直投影恰好与采样图的三角形 重合。
图6是标准图中特征三角形缩放的示意图。如图6所示,对于如图5(a)中情 况,三角形ΔA0B0C0是标准图上特征三角形的初始位置,通过将其中一条边B0C0在其所在平面内进行平移,可以确定标准图中特征点的垂直投影与采样图中特 征点重合的位置,且该位置是唯一的。
将特征三角形ΔA0B0C0进行平移令特征点A0与特征点A1重合,然后在特征点A0固定条件下对特征三角形ΔA0B0C0进行缩放得到特征三角形记缩放 倍数为x,则有如下表达式:
其中,分别表示缩放后特征三角形中三角形边的边长,分别表示特征三角形ΔA0B0C0进行缩放 后特征点A0、特征点B0和特征点C0所对应的点。
由于特征三角形ΔA1B1C1是缩放后特征三角形在水平面的垂直投 影,则有
综上所述,将特征三角形ΔA0B0C0进行移动令特征点A0与特征点A1重合,然 后在特征点A0固定条件下对特征三角形ΔA0B0C0进行缩放得到特征三角形令特征三角形在水平面的垂直投影为特征三角形ΔA1B1C1, 分别表示特征三角形ΔA0B0C0进行移动、缩放后特征点A0、特征点B0和 特征点C0所对应的点,将缩放倍数x作为未知参数,构建如下方程组:
其中,表示点相对于水平面的高度值,表示点相对于水平面 的高度值。
求解上述方程组,得到两组高度值,分别记为这 两组高度值分别对应了图5中的(a)与(b)(或图5中的(c)与(d))这两种结果。因 为这两种倾斜状态下的标定物垂直投影成像结果是相同的,故无法直接通过图 像信息对方程组的解进行选取。可通过试错的方法进行结果的选取。
S403:计算倾角:
分别采用两组高度值计算得到两组精密工作台倾角,计算方法如下:
记当前所采用的高度值为k=1,2,采样图中特征三角形ΔA1B1C1中三个特征点在所建立的空间直角坐标系中的坐标分别为 则特征三角形中三个特征点在空间直角坐标 系中的坐标分别为
在空间直角坐标系中,计算垂直于特征三角形所在平面的法向量图7是图6所示特征三角形的法向量示意图。实际计算中,单 位法向量会产生两组解,分别对应的待测倾斜面朝上及朝下的法向量,二者在 后续的倾角计算结果中并无差异,此处仅取的解以作后续使用。
即可根据法向量计算得到精密工作台在空间直角坐标系中在 x轴方向上的倾角和在y轴方向上的倾角
为了更好地说明本发明的技术方案,采用具体实例对本发明进行实验验证。 预先设置精密工件台在x轴方向上的倾角为5°,在y轴方向上的倾角为-5°。
图8是本实施例中采样图和标准图中特征三角形示例图。如图8所示,采 样图中特征三角形的三个顶点的特征点坐标为:
A1(146.68,494.979),B1(82.1146,364.66),C1(232.707,427.019)
标准图中与之相匹配的三个特征点坐标为:
A0(594.808,498.062),B0(530.012,373.248),C0(677.221,429.982)
由特征点坐标求得采样图中特征三角形ΔA1B1C1的边长分别为:
B1C1=162.993,A1C1=109.632,A1B1=145.436
标准图中的特征三角形ΔA0B0C0的边长为:
B0C0=157.763,A0C0=106.896,A0B0=140.631
求解步骤S402中的方程组,得到两组解。本实施例中选取 这组解。采样图中特征三角形ΔA1B1C1中三个特征点在空间直角坐 标系中的坐标分别为:
A1(146.68,494.979,0),B1(82.1146,364.66,0),C1(232.707,427.019,0)
则特征三角形中三个特征点在空间直角坐标系中的坐标分别为
计算得到特征三角形的法向量的数值为由法向量可计算得到倾斜面分别在x轴方 向上和y轴方向上的倾角为θx=5.71745°,θy=-5.18507°。
为了说明本发明的有效性,另外再选取两组特征点对重新进行倾角计算。
表1是本实施例中三组特征点对所计算得到的倾角统计信息表。
表1
可见,所求得的倾角与实际倾角的误差在工程应用可以接受范围内,说明 了本发明的有效性。
此外,由于本发明中还提出了特征点对的筛选方法,因此对随机选择特征 点对和经筛选确定特征点对两种方式的技术效果进行对比。每种方式分别选取 三组特征点对进行倾角计算。表2是本发明中随机选择特征点对和经筛选确定 特征点对的倾角计算结果对比表。
表2
如表2所示,在随机选择特征点对的情况下,求得的倾角最终结果与实际 倾角数值相差较大。具体分析表5-2中的数据可知,随机选择特征点对的第一组 和第三组特征三角形对计算得到的倾角结果较为接近实际倾角数值,但第二组 的计算结果则产生严重偏离。回溯实验过程找到第二组数据对应的特征点对的 坐标信息,发现图像中有两个特征点的位置过于紧密,也即获取的特征三角形 的一边长度过小,对倾角计算结果产生较大影响。而经筛选确定特征点对所得 到的倾角误差比较稳定。
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域 的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对 本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定 的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发 明创造均在保护之列。