一种基于辐射成像的集装箱空箱检测方法
技术领域
本发明涉及辐射成像领域的车辆检查系统,一种基于辐射成像的集装箱空箱检测方法,对集装箱空箱进行更准确的判断。
背景技术
我国是贸易大国,也属于出口导向型经济大国,每年有大量的空集装箱入关,集装箱空箱的检测需求与日俱增。目前国内的集装箱空箱检测方法主要有两种:一种是采用进出关口的集装箱车辆必须打开柜门、卡口必须有高位摄像头和探照灯能够照入箱体、人工拦截检查空箱内情况,或随机进行布控对空车重点人工/机检查验,此类方法均需要专门人员在关口通道现场介入处理,存在操作效率低下、受天气光线等自然条件影响较大、大量机械性并且无效的检查易流于形式、潜在廉政隐患等缺陷,对于业务繁忙的监管场所,上述的缺陷容易被走私分子发现利用。另一种方法是采用国内某厂家开发的超声仪对空箱进行检测,原理是利用预先采集的空集装箱的超声特征与实测的集装箱超声特征进行对比从而判断是否空箱。这种方法三个重要的缺陷,第一、集装箱的材质不一样,铁皮的厚度不一,对超声波的回声影响很大,给你集装箱空箱的回声特征的标定采集带来极大的困难,空集装箱回声特征采集不准无法进行准确判断,第二、超声发生器和声呐必须由上到下,从左到右扫描整个集装箱,车辆必须停车,耗时过长,与不停车的基于辐射成像的集装箱空箱检测方法相比,检查效率很低。第三、发动机等机械设备在运行中会产生大量超声,干扰检测,特别对于接近集装箱底部的区域,超声特征复杂,无法根据超声反馈进行空箱判断,实际应用中,基于超声波的空箱检测系统在准确率方面不尽如人意。
发明内容
本发明的目的在于提供一种基于辐射成像的集装箱空箱检测方法,通过辐射成像技术采用不停车的方式采集集装箱车辆的透视图,根据透视图用图像算法提取集装箱区域,从而对集装箱区域进行算法处理,根据处理结果判断集装箱是否为空箱。
本发明的技术方案为:一种基于辐射成像的集装箱空箱检测方法,其特征在于:该检测方法包括两部分:(1)通过辐射成像设备采集集装箱车辆的透视图;(2)对透视图进行处理,提取集装箱区域,对集装箱区域的图片进行算法处理,从而判断是否为空箱。
集装箱车辆透视图像中提取集装箱目标区域的算法中包括以下步骤:
步骤1.1:对透视图像进行亮暗场矫正,得到矫正图像M1;
步骤1.2:对M1图像进行5×5窗口的高斯模糊和直方图均衡处理,得到图像M2;
步骤1.3:对M2图像使用最大最小值归一化到0-255,得到图像M3;
步骤1.4:对M3图像取反得到图像M4,对M4图像进行逐列像素值均值计算,得到一维数组ArrCols,数组的长度LenCols与M4图像的宽度一致;
步骤1.5:对ArrCols数组由ArrCols[0]到ArrCols[LenCols/2]方向进行遍历,得到第一个大于阈值Thred的ArrCols[i]值,并得到对应的数组ArrCols索引i,阈值Thred的取值范围是200到100,初始值置为100;
步骤1.6:如果步骤1.5得不到大于Thred的ArrCols[i]值,则继续以步长为10递减阈值Thred,进行步骤1.5,直到求出第一个大于阈值Thred的ArrCols[i]值,并得到对应的数组ArrCols索引i,i为集装箱左侧边缘位置;
步骤1.7:对ArrCols数组由ArrCols[LenCols]到ArrCols[LenCols/2]方向进行遍历,得到第一个大于阈值Thred的ArrCols[j]值,并得到对应的数组ArrCols索引j,阈值Thred的取值范围是200到100,初始值置为200;
步骤1.8:如果步骤1.7得不到大于Thred的ArrCols[j]值,则继续以步长为10递减阈值Thred,进行步骤1.7,直到求出第一个大于阈值Thred的ArrCols[j]值,并得到对应的数组ArrCols索引j,j为集装箱右侧边缘位置;
步骤1.9:对M4图像进行逐行像素值均值计算,得到一维数组ArrRows,数组的长度LenRows与M4图像的高度一致;
步骤1.11:对ArrRows数组由ArrRows[0]到Arr[LenRows/2]方向进行遍历,得到第一个大于阈值Thred的ArrRows[k]值,并得到对应的数组ArrRows索引k,阈值Thred的取值范围是200到100,初始值置为200;
步骤1.12:如果步骤1.11得不到大于Thred的ArrRows[k]值,则继续以步长为10递减阈值Thred,进行步骤1.11,直到求出第一个大于阈值Thred的Arr[k]值,并得到对应的数组ArrRows索引k,k为集装箱顶部边缘位置;
步骤1.13:对ArrRows数组由ArrRows[LenRows]到ArrRows[LenRows/2]方向进行遍历,得到第一个大于阈值Thred的ArrRows[m]值,并得到对应的数组ArrRows索引m,阈值Thred的取值范围是200到100,初始值置为200;
步骤1.14:如果步骤1.13得不到大于Thred的ArrRows[m]值,则继续以步长为10递减阈值Thred,进行步骤1.13,直到求出第一个大于阈值Thred的ArrRows[m]值,并得到对应的数组ArrRows索引m,m为集装箱底部边缘位置;
步骤1.15:通过步骤1.6,步骤1.8,步骤1.12和步骤1.14得到集装箱在图像中的左侧、右侧、顶部和底部的位置i,j,k,m,从而可以提取集装箱目标区域。
得到集装箱目标区域后,对集装箱目标区域进行算法计算判断是否空箱,包括以下步骤;
步骤2.1:对矫正图像M1和i,j,k,m值,提取集装箱区域Mroi图;
步骤2.2:依次对Mroi进行高斯模糊、直方图均衡和USM锐化,得到Mroi2图;
步骤2.3:对Mroi2图进行自适应二值化,得到图像Mroi3;
步骤2.4:对Mroi3图进行列方向的像素均值计算,得到数组Arr,计算公式是
其中Arr为Mroi3图像列方向的像素均值数组,Arr的长度等于图像Mroi3的宽度b,rows为图像的高度,也就是图像Mroi3每列像素个数,M为Mroi3图像对应的矩阵。
步骤2.5:对于集装箱装有均匀分布的物品,进行算法判断如下:如果数组Arr的均值大于80,则判断集装箱装有均匀分布的物品,此集装箱为非空箱。
步骤2.6:对于集装箱装有非均匀分布的物品,进行算法判断流程如下:
对Arr数组计算得到平均值Avg,根据均值Avg与Arr数组的差计算权重f,f的计算公式是
其中h为数组Arr第h个索引。
求Arr的加权式方差,计算公式如下
其中为加权式方差,cols为Arr的长度。
根据值判断是否空箱,如果值大于等于50.5则为非空箱(此值为空箱标定值),小于则为空箱。
本发明的优点在于:(1)被检查的集装箱车辆无需停车(通过电气技术实现车头避让),直接通过检测通道。(2)基于数字图像算法的处理方法,有较高的空箱检测准确率。(3)基于数字图像算法的空箱判断方式由更高的扩展性,通过升级算法而非硬件,就可以提高其他类型集装箱的空箱识别。(4)本发明提出的算法复杂度较低,稳定性高,满足一定范围车速变化的实际情况,也满足中低处理器计算实时性要求。
附图说明
图1是基于超声波技术的空箱检测设备结构示意图。
图2是基于辐射成像的空箱检测结构示意图。
图3是基于辐射成像技术采集的车头避让后的集装箱透视图。
图4是算法提取到的集装箱目标区域图。
图5是数组图像处理后的集装箱目标区域图。
图6是集装箱目标区域图在列方向计算的像素均值图表。
图7集装箱透视图的集装箱目标区域提取算法流程图。
图8集装箱目标区域图像进行空箱判断的算法流程图。
图1中:a-超声波发生器与声呐,b-超声仪底座,c-超声仪机械臂,d-车辆检测通道,e-待检集装箱车辆。
图2中:1-射线源,2-探测器,3-出口对位光栅,用于车头避让,4-入口对位光栅,用于车头避让,5-空箱算法计算电脑,6-车辆检测通道,7-待检集装箱车辆。
具体实施方式
下面结合附图对本发明具体实施例做进一步详细描述。
图2是基于辐射成像的集装箱空箱检测结构图,1为射线发生装置,2为射线探测器,根据射线经过车辆衰减后的强弱不同成像,3和4为车头避让光栅,除了能进行车头避让保护司机安全外还会通过信号控制射线源的出束和停束,5为透视图处理和空箱判断算法运行的上位机电脑,6为检测通道,待检集装箱车辆7由司机驾驶以一定速度通过检测通道4,通过车头避让红外触发射线源和探测器工作,采集集装箱车辆透视图。集装箱车辆透视图实时传输到上位机5。以上是辐射成像集装箱透视图成图的过程。
获得集装箱透视图后,在上位机电脑5中进行集装箱目标区域的提取,提取的算法流程是对原始的透视图进行亮暗场矫正,对校正后的图像进行高斯模糊、直方图均衡和USM锐化,并进行自适应二值化分割,得到二值化图像,对二值化图像进行列方向的均值计算,根据均值的加权方差值与空箱的加权方差值进行比较,从而判断是否为空箱。空箱的加权方差值的标定一次就可以,通过实际的测量,这个标定值为50±0.5。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。