一种基于质心的结构光角点检测方法

文档序号:9336 发布日期:2021-09-17 浏览:118次 英文

一种基于质心的结构光角点检测方法

技术领域

本发明涉及计算机图像处理

技术领域

和水下光学成像

技术领域

,具体涉及跨介质水下成像中一种基于质心的结构光角点检测方法。

背景技术

角点检测是计算机视觉系统中用来获得图像特征的一种方法,广泛应用于运动检测、图像匹配、视频跟踪、三维建模和目标识别等领域中。角点通常被定义为两条边的交点,更严格的说,角点的局部邻域应该具有两个不同区域的不同方向的边界。目前经典的角点检测技术有Harris角点检测算法、Fast角点检测算法、Surf角点检测算法等。

对于跨介质水下成像,由于水面的随机波动导致拍摄的结构光图像会出现严重的扭曲及运动模糊。图像的这种扭曲和模糊严重影响了人们视觉观察的主观感受并极容易引起对图像内容的误判。对于该类图像,目前的角点检测方法存在漏检、重复检测、多检以及检测不准确等问题,对后续图像的复原及目标的识别造成干扰。

发明内容

水面的随机波动会导致结构光图像的扭曲,目前角点检测方法存在漏检、重复检测、多检等问题,针对目前已有的角点检测算法的不足,本发明提供一种基于质心的结构光角点检测方法,保证了检测精度,防止了伪角点的产生。

本发明解决其技术问题所采用的技术方案是:

一种基于质心的结构光角点检测方法,包括如下步骤:

步骤1),将拍摄的图像转换为二值图像后,基于边缘检测算法进行轮廓查找,遍历查找获得最大连通域,并将该区域转换为矩形图框,最大轮廓区域即为目标图像;

步骤2),根据连通域对结构光图像进行区域分割,即从目标图像内任一像素出发,寻找具有相同像素值的相邻像素组成像素集合为一个连通域,阈值分割得到结构光图像的多个连通域,并对每个连通域进行标记;

步骤3),在区域分割的基础上,通过边缘检测算法获取连通域轮廓的像素集G,利用空间矩函数计算每个轮廓的中心点,即为连通域的质心,其中空间矩函数为:

其中mpq为p+q阶空间矩函数,p,q为阶数,M×N为连通域所在图像的像素大小,G(i,j)为连通域轮廓的像素集,i,j表示图像第i行第j列个像素点;

由公式(1)可求得质心坐标:

其中为质心行坐标,为质心列坐标,m00为空间矩函数的零阶矩,表示像素集G的元素个数;m10为空间矩函数的一阶矩,表示像素集G中像素行坐标的累加和;m01为空间矩函数的一阶矩,表示像素集G中像素列坐标的累加和;

步骤4),遍历每个连通域的像素点,根据质心坐标位置和标准结构光形状特征,将连通域分割成个n子区域,其中n为多边形的边数;

步骤5),根据距离度量公式,通过距离最大公式计算质心距离各个子区域最远的n个像素点,即为各个连通域角点,并对角点进行标记;例如使用欧式距离作为距离的度量标准,其中距离最大公式为:

其中d为质心到各个角点之间的距离,xa为像素点的行坐标,ya为像素点的列坐标;xc为质心的行坐标,yc为质心的列坐标。

本发明的优点或有益效果:

(1)针对目前已有的角点检测算法的不足,解决了该类方法出现的多检、误检以及图像出现运动模糊时漏检等问题;

(2)本发明利用边缘检测相关原理,提出基于质心的结构光角点检测方法。由于水面的随机波动导致拍摄的结构光会出现严重的扭曲及运动模糊。图像的这种扭曲和模糊严重影响了人们视觉观察的主观感受并极容易引起对图像内容的误判。本发明也适用于跨介质水下成像造成的畸变图像的角点提取,在保证检测结果可靠性的同时,又提高了数据处理速度,缩短了角点提取的时间。

附图说明

图1为实施例中基于质心的结构光角点检测方法的原理图;

图2为实施例中基于质心的结构光角点检测流程图;

图3a-图3e为实施例中基于质心的结构光角点检测方法的实际拍摄与处理的效果图,其中图3a为实际图像,图3b为获取图像的目标区域,图3c为对目标区域的预处理图像,图3d为获取方格质心,图3e角点检测的结果;

图4a-图4b为实施例中因随机波动水面引起的交错条纹结构光产生的扭曲与畸变方格分析图,其中图4a为拍摄扭曲的结构光图像,图4b为检测结构光图像的角点。

具体实施方式

下面结合附图和实施例对本发明内容作详细描述,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。

实施例:

如图2所示,在空中拍摄水下的标准结构光图像,通过图像预处理和基于质心的结构光角点检测方法,实现了图像中扭曲结构光的角点检测,具体包含以下技术:

结构光:由于结构光具有非接触测量,方案成熟,夜晚也可使用,精度较高等优点,常用来进行三维扫描或者三维空间复原。

边缘检测:消除图像中无关的信息,获得图像中亮度变化剧烈的轮廓信息,从而改进特征提取、图像分割、目标识别和定位的可靠性。

角点检测:目前角点检测技术有Harris算法、Fast算法、Susan算法等。对于图3b该类结构光图像,以往算法存在漏检、多检以及检测不准确等问题,本发明利用边缘检测相关原理,提出基于质心的结构光角点检测方法。

如图2所示,空中通过相机拍摄水下的标准结构光图像,对拍摄的图像基于边缘检测方法进行轮廓筛选,获取结构光所在的目标区域,再对该目标区域进行二值化处理,通过质心的结构光角点检测方法检测获取目标图像的每个角点。

一种基于质心的结构光角点检测方法,包括以下步骤:

步骤(1),空中通过相机拍摄水下的标准结构光图像如图3a所示,将拍摄的图像转换为二值图像后,基于边缘检测算法进行轮廓查找,遍历查找获得最大连通域,并将该区域转换为矩形图框,提取图3a中最大轮廓区域即为结构光所在的目标图像,如图3b所示;

步骤(2),对提取的目标图像做二值化处理如图3c所示,根据连通域对结构光图像进行区域分割,即从目标图像内任一像素出发,寻找具有相同像素值的相邻像素组成像素集合为一个连通域,阈值分割得到多个连通域,并对每个连通域进行标记;

步骤(3),在区域分割基础上,通过边缘检测算法获取连通域轮廓的像素集G,利用空间矩函数计算每个轮廓的中心点,即为连通域的质心如图3d所示,其中,空间矩函数为:

其中,mpq为p+q阶空间矩函数,p,q为阶数,M×N为连通域所在图像的像素大小,G(i,j)为连通域轮廓的像素集,i,j表示图像第i行第j列个像素点;

由公式(1)可求得质心坐标:

为质心行坐标,为质心列坐标;m00为空间矩函数的零阶矩,表示像素集G的元素个数;m10为空间矩函数的一阶矩,表示像素集G中像素行坐标的累加和;m01为空间矩函数的一阶矩,表示像素集G中像素列坐标的累加和;

步骤(4),遍历每个连通域的像素点,根据质心坐标位置和标准结构光形状特征,将连通域分割成个n子区域,其中n为多边形的边数,根据质心的坐标位置划分成4个子区域,设输入向量索引值的行坐标为xa、列坐标为ya,中心点的行坐标为xc、列坐标为yc,判定关系如表1所示,判定范围为每一个连通域;

表1划定区域判定表

判定关系式 区域
x<sub>a</sub><x<sub>c</sub>&amp;y<sub>a</sub><y<sub>c</sub> 左上
x<sub>a</sub>>x<sub>c</sub>&amp;y<sub>a</sub><y<sub>c</sub> 左下
x<sub>a</sub><x<sub>c</sub>&amp;y<sub>a</sub>>y<sub>c</sub> 右上
x<sub>a</sub>>x<sub>c</sub>&amp;y<sub>a</sub>>y<sub>c</sub> 右下

步骤(5),采用欧式距离作为距离的度量标准,如图1所示通过距离最大公式计算质心距离4个子区域最大的4个像素点,即为角点,如图1中点P1-P4,其中max即获取最大值,并对角点进行标记处理,从而获得结构光的全部角点如图3e所示,其中距离最大公式为:

其中d为质心到各个角点之间的距离,xa为像素点的行坐标,ya为像素点的列坐标;xc为质心的行坐标,yc为质心的列坐标。

与其他角点检测方法相比,本发明方法用于因随机波动水面引起的交错条纹图像产生的扭曲方格,如图4a图4b所示,该角点检测亦不会出现漏检、重复检测、多检以及由于运动模糊造成的检测不准确等问题。

以上所述实施例只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之原理所作的变化,均应涵盖在本发明的保护范围内。

完整详细技术资料下载
上一篇:石墨接头机器人自动装卡簧、装栓机
下一篇:基于强弱联合半监督直觉模糊聚类的图像分割方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!