Garbage storage pool processing progress detection method and system based on artificial intelligence

文档序号:9265 发布日期:2021-09-17 浏览:41次 中文

1. The garbage storage pool treatment progress detection method based on artificial intelligence is characterized by comprising the following steps:

acquiring an internal image of a garbage storage pool and a thermal imaging image of an air outlet of the garbage storage pool;

obtaining the gas characteristics of the air outlet according to the thermal imaging image;

acquiring a gray level image of a garbage area of the internal image, and performing complexity analysis on the gray level image to acquire the complexity of garbage;

analyzing the fermentation degree of the garbage by combining the complexity with the gas characteristics to obtain the fermentation degree of the garbage;

acquiring garbage humidity, stirring initial time and stirring finishing time; and judging the garbage treatment progress according to the fermentation degree variable quantity and the garbage humidity variable quantity from the stirring initial time to the stirring end time.

2. The method of claim 1, wherein the gas characteristic comprises a flow rate, and the obtaining of the flow rate comprises:

the air outlet is divided into regions according to a preset grid, the maximum temperature point of each frame of each region is obtained, and the maximum temperature point sequence of each region is obtained;

calculating the offset distance of the maximum temperature point of each area in the multi-frame thermal imaging image;

and acquiring the flow velocity of the air outlet according to the ratio of the average value of the offset distances of all the areas to the sampling time.

3. The method according to claim 1, wherein the stirring initial time and the stirring end time are obtained by:

and acquiring the coordinates of key points of the claw tips of the grab bucket, acquiring the stirring starting time and the stirring ending time of the grab bucket according to the change of the coordinates of the key points, and taking the stirring starting time as the stirring initial time and the stirring ending time as the stirring ending time.

4. The method according to claim 1, characterized in that the humidity is acquired by a humidity sensor mounted on the grapple.

5. The method according to claim 1, wherein the method for determining the progress of garbage disposal comprises:

and when the fermentation degree variation is smaller than the fermentation variation threshold value and the humidity variation is smaller than the humidity variation threshold value after the continuous stirring for multiple times is finished, judging that the garbage is completely treated.

6. Progress detecting system is handled to rubbish storage pond based on artificial intelligence, its characterized in that, this system includes the following module:

the image acquisition module is used for acquiring an internal image of the garbage storage pool and a thermal imaging image of an air outlet of the garbage storage pool;

the gas characteristic acquisition module is used for acquiring the gas characteristics of the air outlet according to the thermal imaging image;

the complexity obtaining module is used for obtaining a gray level image of a garbage area of the internal image, and performing complexity analysis on the gray level image to obtain the complexity of garbage;

the fermentation degree acquisition module is used for analyzing the fermentation degree of the garbage by combining the complexity with the gas characteristics to obtain the fermentation degree of the garbage;

the garbage treatment progress judging module is used for acquiring garbage humidity, stirring initial time and stirring finishing time; and judging the garbage treatment progress according to the fermentation degree variable quantity and the garbage humidity variable quantity from the stirring initial time to the stirring end time.

7. The system of claim 6, wherein the gas signature acquisition module comprises a flow rate acquisition unit comprising:

the maximum temperature point sequence acquisition unit is used for carrying out region division on the air outlet according to a preset grid, acquiring the maximum temperature point of each frame of each region and acquiring the maximum temperature point sequence of each region;

the offset distance calculation unit is used for calculating the offset distance of the maximum temperature point of each area in the multi-frame thermal imaging image;

and the flow velocity calculation unit is used for acquiring the flow velocity of the air outlet according to the ratio of the average value of the offset distances of all the areas to the sampling time.

8. The system according to claim 6, wherein the garbage disposal progress determination module comprises a stirring initial time and a stirring end time acquisition unit, configured to acquire key point coordinates of a claw tip of the grab bucket, acquire a stirring start time and a stirring end time of the grab bucket according to changes of the key point coordinates, and use the stirring start time as the stirring initial time and the stirring end time as the stirring end time.

9. The system according to claim 8, wherein the garbage disposal progress judging module comprises a humidity acquiring unit for acquiring humidity by a humidity sensor installed on the grapple.

10. The system of claim 6, wherein the garbage disposal progress determining module comprises:

and the threshold judging unit is used for judging that the garbage is completely treated when the fermentation degree variation is smaller than the fermentation variation threshold and the humidity variation is smaller than the humidity variation threshold after the continuous stirring for multiple times is finished.

Background

Along with the development of modern science and technology, the waste incineration power generation technology is newly generated, and is used as one of the harmless and clean treatment modes of waste, and the waste incineration power generation is gradually an important means for novel urbanization construction and urban ecological civilization construction due to the advantages of high reduction degree, strong waste treatment capacity and the like.

After the rubbish is transported to the waste incineration power plant, because rubbish is of various types and has large humidity, the rubbish entering the plant is firstly unloaded to a rubbish storage pool for buffering, fermenting and separating out percolate therein, so that the rubbish after being treated is more favorable for the waste incineration, and the incineration efficiency of the waste incineration power generation is improved.

In practice, the inventors found that the above prior art has the following disadvantages:

at present, the progress of treatment to the waste storage pond mainly depends on the staff to carry out the progress of treatment judgement according to the experience, can not accurately judge the progress of refuse treatment, has the condition that the rubbish of not handling completely is snatched to burning furnace and is burnt, has greatly reduced the efficiency of burning the electricity generation, has increased and has burned the electricity generation cost.

Disclosure of Invention

In order to solve the technical problems, the invention aims to provide a garbage storage pool processing progress detection method and system based on artificial intelligence, and the adopted technical scheme is as follows:

in a first aspect, an embodiment of the present invention provides a method for detecting a processing progress of a garbage storage pool based on artificial intelligence, where the method includes the following steps:

acquiring an internal image of a garbage storage pool and a thermal imaging image of an air outlet of the garbage storage pool;

obtaining the gas characteristics of the air outlet according to the thermal imaging image;

acquiring a gray level image of a garbage area of the internal image, and performing complexity analysis on the gray level image to acquire the complexity of garbage;

analyzing the fermentation degree of the garbage by combining the complexity with the gas characteristics to obtain the fermentation degree of the garbage;

acquiring garbage humidity, stirring initial time and stirring finishing time; and judging the garbage treatment progress according to the fermentation degree variable quantity and the garbage humidity variable quantity from the stirring initial time to the stirring end time.

Preferably, the gas characteristics include a flow rate, and the obtaining of the flow rate includes:

the air outlet is divided into regions according to a preset grid, the maximum temperature point of each frame of each region is obtained, and the maximum temperature point sequence of each region is obtained;

calculating the offset distance of the maximum temperature point of each area in the multi-frame thermal imaging image;

and acquiring the flow velocity of the air outlet according to the ratio of the average value of the offset distances of all the areas to the sampling time.

Preferably, the method for acquiring the stirring initial time and the stirring end time includes:

and acquiring the coordinates of key points of the claw tips of the grab bucket, acquiring the stirring starting time and the stirring ending time of the grab bucket according to the change of the coordinates of the key points, and taking the stirring starting time as the stirring initial time and the stirring ending time as the stirring ending time.

Preferably, the humidity is obtained by a humidity sensor mounted on the grab bucket.

Preferably, the method for judging the garbage disposal progress comprises the following steps:

and when the fermentation degree variation is smaller than the fermentation variation threshold value and the humidity variation is smaller than the humidity variation threshold value after the continuous stirring for multiple times is finished, judging that the garbage is completely treated.

In a second aspect, another embodiment of the present invention provides an artificial intelligence-based garbage storage pool processing progress detection system, which is characterized in that the system includes the following modules:

the image acquisition module is used for acquiring an internal image of the garbage storage pool and a thermal imaging image of an air outlet of the garbage storage pool;

the gas characteristic acquisition module is used for acquiring the gas characteristics of the air outlet according to the thermal imaging image;

the complexity obtaining module is used for obtaining a gray level image of a garbage area of the internal image, and performing complexity analysis on the gray level image to obtain the complexity of garbage;

the fermentation degree acquisition module is used for analyzing the fermentation degree of the garbage by combining the complexity with the gas characteristics to obtain the fermentation degree of the garbage;

the garbage treatment progress judging module is used for acquiring garbage humidity, stirring initial time and stirring finishing time; and judging the garbage treatment progress according to the fermentation degree variable quantity and the garbage humidity variable quantity from the stirring initial time to the stirring end time.

Preferably, the gas characteristic acquisition module includes a flow rate acquisition unit, and the flow rate acquisition unit includes:

the maximum temperature point sequence acquisition unit is used for carrying out region division on the air outlet according to a preset grid, acquiring the maximum temperature point of each frame of each region and acquiring the maximum temperature point sequence of each region;

the offset distance calculation unit is used for calculating the offset distance of the maximum temperature point of each area in the multi-frame thermal imaging image;

and the flow velocity calculation unit is used for acquiring the flow velocity of the air outlet according to the ratio of the average value of the offset distances of all the areas to the sampling time.

Preferably, the garbage disposal progress judging module includes a stirring initial time and a stirring end time acquiring unit, configured to acquire a key point coordinate of a claw tip of the grab bucket, acquire a stirring start time and a stirring end time of the grab bucket according to a change of the key point coordinate, and use the stirring start time as the stirring initial time and the stirring end time as the stirring end time.

Preferably, the garbage disposal progress judging module includes a humidity obtaining unit for obtaining humidity through a humidity sensor installed on the grab bucket.

Preferably, the garbage disposal progress judging module includes:

and the threshold judging unit is used for judging that the garbage is completely treated when the fermentation degree variation is smaller than the fermentation variation threshold and the humidity variation is smaller than the humidity variation threshold after the continuous stirring for multiple times is finished.

The embodiment of the invention has at least the following beneficial effects:

1. according to the embodiment of the invention, the variable quantity of the fermentation degree of the garbage and the variable quantity of the humidity can be analyzed, so that the progress of accurately judging the garbage treatment can be determined, the optimal time for treating the garbage in the garbage storage pool can be obtained, the garbage is easier to burn, the power generation efficiency is improved, and the cost is reduced.

2. The fermentation degree of the garbage in the storage pool is evaluated through the complexity of the entropy value, and the processing progress of the organic garbage in the storage pool can be accurately quantified.

Drawings

In order to more clearly illustrate the embodiments of the present invention or the technical solutions and advantages of the prior art, the drawings used in the description of the embodiments or the prior art will be briefly described below, it is obvious that the drawings in the following description are only some embodiments of the present invention, and other drawings can be obtained by those skilled in the art without creative efforts.

FIG. 1 is a flowchart illustrating steps of a method for detecting processing progress of a garbage storage pool based on artificial intelligence according to an embodiment of the present invention;

fig. 2 is a block diagram of a system for detecting processing progress of a garbage storage pool based on artificial intelligence according to an embodiment of the present invention.

Detailed Description

In order to further illustrate the technical means and effects of the present invention adopted to achieve the predetermined objects, the following detailed description, with reference to the accompanying drawings and preferred embodiments, describes specific embodiments, structures, features and effects of a garbage storage pool processing progress detection method and system based on artificial intelligence according to the present invention. In the following description, different "one embodiment" or "another embodiment" refers to not necessarily the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.

The following describes a specific scheme of the method and system for detecting the processing progress of the garbage storage pool based on artificial intelligence in detail with reference to the accompanying drawings.

Referring to fig. 1, a flowchart illustrating steps of a method for detecting processing progress of a garbage storage pool based on artificial intelligence according to an embodiment of the present invention is shown, where the method includes the following steps:

and S001, acquiring an internal image of the garbage storage pool and a thermal imaging image of an air outlet of the garbage storage pool.

After the refuse transport vehicle enters a refuse incineration power plant, refuse in the vehicle is poured into a refuse storage pool through a refuse dumping port, an RGB camera is deployed inside the storage pool, the camera is fixed in position, a plurality of cameras are selected according to the scale of the storage pool, and all refuse in the storage pool can be shot.

A thermal imaging camera is arranged at an air outlet of the garbage storage pool, and the air outlet is used as an area of interest (ROI) so as to be convenient for analyzing the air flow movement condition.

And step S002, obtaining the gas characteristics of the air outlet according to the thermal imaging image.

Specifically, the gas characteristics include temperature and flow rate, and the obtaining step includes:

1) and acquiring the temperature of the air outlet.

Obtaining the average temperature T of the ROI to represent the temperature at the air outlet, wherein the calculation formula is as follows:

wherein a represents the width of the ROI area, b represents the height of the ROI area, and TijIs the temperature at point (i, j).

2) And acquiring the flow speed of the air outlet.

a. And carrying out region division on the air outlet according to a preset grid, acquiring the maximum temperature point of each frame of each region, and acquiring the maximum temperature point sequence of each region.

As an example, in the embodiment of the present invention, the preset mesh is a nine-equal-division mesh; in other embodiments, the preset mesh of the divided region may be adjusted according to the size of the air outlet.

And acquiring a maximum temperature point sequence of each area through time sequence detection.

b. Calculating the offset distance D of the maximum temperature point of each area in a plurality of frames of thermal imaging images:

wherein (X)S,YS) Is the coordinate of the maximum temperature point of the S-th frame of a certain area, (X)S+1,YS+1) The coordinates of the maximum temperature point of the S +1 th frame of the area.

c. And acquiring the flow velocity of the air outlet according to the ratio of the average value of the offset distances of all the areas to the sampling time.

Calculate the average D' of the offset distances for all regions:

wherein n represents the number of sampling frames, and n-1 offset distances are calculated for n frame images; m represents the number of divided regions; dijThe offset distance for the jth region in the ith calculation.

As an example, in the embodiment of the present invention, 10 is taken and 9 is taken.

Calculating the flow velocity v of the air outlet:

wherein, t0Representing the sampling time, which is available from the frame rate of the camera.

And S003, acquiring a gray image of a garbage area of the internal image, and performing complexity analysis on the gray image to acquire the complexity of the garbage.

Specifically, the step of obtaining the complexity of the garbage includes:

1) and acquiring a gray level image of the garbage area of the internal image.

Carrying out graying operation on the acquired RGB image to obtain a first grayscale image, sending the converted first grayscale image into a trained semantic segmentation neural network, and carrying out pixel level classification on a garbage area and a non-garbage area in a storage pool.

The specific training process is as follows:

a. the data set is an image inside the garbage storage pool.

b. And marking as pixel level marking, marking each pixel point, wherein the marking type is two types, the garbage is marked as 1, and the irrelevant item is marked as 0.

c. The loss function is a cross-entropy loss function.

The semantic segmentation network is of an end-to-end Encoder-Decoder (Encoder-Decoder) structure, features are extracted through convolution operation of an Encoder, the output result of the Encoder is a feature map, and the feature map is operated through the Decoder to obtain a semantic segmentation map.

And multiplying the semantic segmentation image serving as a Mask (Mask) by the first gray level image point by point to obtain a gray level image of the garbage area.

2) And calculating the complexity of the gray level image of the garbage area.

The garbage is stacked in the garbage storage pool, so that part of moisture in the garbage is filtered, and meanwhile, microorganisms in the garbage can ferment the organic garbage, thereby being more beneficial to the combustion of the garbage in the incinerator. The garbage types in the storage pool are many, the color is relatively complex, and the image entropy is large; after the garbage is stacked in the storage tank for a period of time, the organic garbage in the garbage is fermented, the color complexity is reduced, and the image entropy is reduced.

The entropy value of the garbage gray level image is specifically as follows:

where p (i, j) is the probability that the pixel value at (i, j) appears in the image, and c and d are the width and height of the image, respectively. The larger the F, the greater the complexity of the image.

And step S004, performing fermentation degree analysis on the garbage by combining the complexity with the gas characteristics to obtain the fermentation degree of the garbage.

Establishing a garbage fermentation degree evaluation model:

wherein epsilontIndicates the degree of fermentation of the waste at time t, ω1Weight, ω, representing complexity2Weight, ω, representing temperature3A weight representing the flow rate; k is a radical of1、k2、k3For model adjustable parameters, FtRepresenting the entropy of the spam image at time t, F0Representing an entropy value of the spam image at an initial time; t'tShowing the outlet temperature at the t-th moment; v'tShowing the outlet flow rate at time t.

As an example, embodiments of the present invention104、203、303;12、23、k2=3。

By the aid of the model, quantitative analysis of the garbage fermentation degree can be realized.

Step S005, acquiring the humidity of the garbage, the initial stirring moment and the stirring ending moment; and judging the garbage treatment progress according to the fermentation degree variable quantity and the garbage humidity variable quantity from the stirring initial time to the stirring end time.

The method comprises the following specific steps:

1) and acquiring the stirring initial time and the stirring end time.

Acquiring the coordinates of key points of the claw tips of the grab bucket, acquiring the stirring starting time and the stirring ending time of the grab bucket according to the change of the coordinates of the key points, taking the stirring starting time as the stirring initial time, and taking the stirring ending time as the stirring ending time.

The operation of garbage stirring is generally realized by a grab bucket, only one grab bucket is analyzed in the embodiment of the invention, and when a plurality of grab buckets exist, the analysis is carried out in the same way.

For each recognition of the occurrence of a stirring action, this is obtained by the following procedure:

a. grab images are acquired by deploying a fisheye camera at the top of the trash receptacle.

b. And sending the grab bucket image into a trained key point detection network to obtain the key point of the claw tip point of the grab bucket claw.

The training process of the network is as follows:

the image of grab bucket in the storage pool that data set adopted fisheye camera to shoot contains rubbish and does not contain a plurality of scenes such as rubbish including the storage pool, contains the scene that grab bucket claw cusp was sheltered from simultaneously. The label is a claw tip point of the grab bucket claw, the pixel position of the key point is marked, and then Gaussian blur is adopted to form the hot spot of the key point at the marked point. The loss function used is a mean square error loss function.

c. And performing key point circle fitting by using a least square method according to the obtained claw tip key point coordinates of the grab claw, and obtaining the fitting radius of the circle according to the equation of the circle obtained by fitting.

When the grab bucket grabs garbage, all grab bucket claws are contracted tightly, and the distance between the claw tips is very close; when the garbage is released, the grab bucket claw is stretched, and the distance between the tips of the claw is increased.

It should be noted that in the embodiment of the present invention, a multi-petal grab bucket is adopted; when the grapple is positioned directly under the camera, the grapple claw point is reflected in the image as a circle. For images obtained under different visual angles, perspective transformation is firstly carried out, the images are transformed into images under the visual angle right below the camera, and then key point circle fitting is carried out.

d. Calculating the fitting radius of the claw tip point in real time to obtain a radius value sequence, and analyzing the variation trend of the radius value sequence: when the fitting radius value is reduced to a non-zero minimum value from a stable value, is increased to a maximum value and tends to be stable after being kept for a period of time, the process considers that a stirring action occurs once, and meanwhile, when the fitting radius value is just reduced to the minimum value, the grab bucket starts to grab garbage, which is the initial stirring moment; when the maximum value is just increased, the grab bucket releases the garbage, and the stirring is finished.

2) And acquiring the garbage humidity.

The humidity is acquired by a humidity sensor installed on the grab bucket.

In the embodiment of the invention, the grab bucket is provided with the humidity sensor, and when the grab bucket grabs garbage, the humidity sensor is inserted into the garbage for plug-in detection.

The plug-in detection can accurately acquire the humidity of the garbage, and the condition that the result is inaccurate due to the detection of the air humidity is avoided.

3) And judging the garbage treatment progress.

Obtaining the initial stirring moment t1And a stirring end time t2The fermentation degree variation before and after stirring is as follows:

wherein, Delta epsilon is the variation of fermentation degree,indicating the degree of fermentation of the waste at the end of stirring,indicating the degree of fermentation of the waste at the initial time of stirring.

Obtaining humidity data of the humidity sensor at the initial stirring momentHumidity at the end of stirringData ofCalculating the garbage humidity variation delta sigma:

when the continuous stirring is finished for multiple times, the fermentation degree variation is smaller than the fermentation variation threshold value m1And the humidity variation is less than the humidity variation threshold m2And judging that the garbage treatment is complete.

In the embodiment of the invention, when stirring is carried out for ten times continuously, the condition that delta epsilon is less than or equal to m is met1And delta sigma is less than or equal to m2Stopping stirring, wherein the garbage fermentation and the filtrate in the storage tank reach the saturation degree, and taking the stirring end time of the last stirring as the optimal time for the garbage storage tank treatment; otherwise, the garbage treatment is not saturated, and the stirring is continued until the delta epsilon is not more than m1And delta sigma is less than or equal to m2

As an example, in an embodiment of the present invention,1taking out the mixture of 2, adding the mixture of the two,21 is taken.

In summary, the embodiment of the present invention collects an internal image of the garbage storage pool and a thermal imaging image of the air outlet of the garbage storage pool; acquiring the gas characteristics of the air outlet according to the thermal imaging image; acquiring a gray level image of a garbage area of an internal image, and performing complexity analysis on the gray level image to obtain the complexity of garbage; performing fermentation degree analysis on the garbage by combining complexity and gas characteristics to obtain the fermentation degree of the garbage; acquiring garbage humidity, stirring initial time and stirring finishing time; and judging the garbage treatment progress according to the fermentation degree variable quantity and the garbage humidity variable quantity from the stirring initial time to the stirring end time. The embodiment of the invention can determine the progress of accurately judging the garbage treatment, and obtain the optimal time for treating the garbage storage pool, so that the garbage is easier to burn, the power generation efficiency is improved, and the cost is reduced.

Based on the same inventive concept as the method, another embodiment of the invention provides a garbage storage pool processing progress detection system based on artificial intelligence. Referring to fig. 2, the system includes the following modules: the system comprises an image acquisition module 1001, a gas characteristic acquisition module 1002, a complexity acquisition module 1003, a fermentation degree acquisition module 1004 and a garbage treatment progress judgment module 1005.

Specifically, the image acquisition module 1001 is configured to acquire an internal image of the trash storage pool and a thermal imaging image of an air outlet of the trash storage pool; the gas characteristic acquisition module 1002 is used for acquiring gas characteristics of the air outlet according to the thermal imaging image; the complexity obtaining module 1003 is configured to obtain a gray level image of a garbage area of the internal image, perform complexity analysis on the gray level image, and obtain complexity of garbage; the fermentation degree obtaining module 1004 is used for analyzing the fermentation degree of the garbage by combining the complexity with the gas characteristics to obtain the fermentation degree of the garbage; the garbage treatment progress judging module 1005 is used for acquiring garbage humidity, stirring initial time and stirring finishing time; and judging the garbage treatment progress according to the fermentation degree variable quantity and the garbage humidity variable quantity from the stirring initial time to the stirring end time.

Preferably, the gas characteristic acquisition module includes a flow rate acquisition unit, and the flow rate acquisition unit includes:

the maximum temperature point sequence acquisition unit is used for carrying out region division on the air outlet according to a preset grid, acquiring the maximum temperature point of each frame of each region and acquiring the maximum temperature point sequence of each region;

the offset distance calculation unit is used for calculating the offset distance of the maximum temperature point of each area in the multi-frame thermal imaging image;

and the flow velocity calculation unit is used for acquiring the flow velocity of the air outlet according to the ratio of the average value of the offset distances of all the areas to the sampling time.

Preferably, the garbage disposal progress judging module includes a stirring initial time and a stirring end time acquiring unit, configured to acquire key point coordinates of a claw tip of the grab bucket, acquire a stirring start time and a stirring end time of the grab bucket according to changes in the key point coordinates, and use the stirring start time as the stirring initial time and the stirring end time as the stirring end time.

Preferably, the garbage disposal progress judging module includes a humidity acquiring unit for acquiring humidity through a humidity sensor installed on the grab bucket.

Preferably, the garbage disposal progress judging module includes:

and the threshold judging unit is used for judging that the garbage is completely treated when the fermentation degree variation is smaller than the fermentation variation threshold and the humidity variation is smaller than the humidity variation threshold after the continuous stirring for multiple times is finished.

In summary, in the embodiment of the present invention, the image acquisition module acquires the internal image of the garbage storage pool and the thermal imaging image of the air outlet of the garbage storage pool; obtaining the gas characteristics of the air outlet through a gas characteristic obtaining module according to the thermal imaging image; acquiring a gray level image of a garbage area of an internal image through a complexity acquisition module, and performing complexity analysis on the gray level image to acquire the complexity of garbage; performing fermentation degree analysis on the garbage through a fermentation degree acquisition module by combining complexity and gas characteristics to obtain the fermentation degree of the garbage; acquiring garbage humidity, stirring initial time and stirring finishing time through a garbage treatment progress judging module; and judging the garbage treatment progress according to the fermentation degree variable quantity and the garbage humidity variable quantity from the stirring initial time to the stirring end time. The embodiment of the invention can determine the progress of accurately judging the garbage treatment, and obtain the optimal time for treating the garbage storage pool, so that the garbage is easier to burn, the power generation efficiency is improved, and the cost is reduced.

It should be noted that: the precedence order of the above embodiments of the present invention is only for description, and does not represent the merits of the embodiments. And specific embodiments thereof have been described above. Other embodiments are within the scope of the following claims. In some cases, the actions or steps recited in the claims may be performed in a different order than in the embodiments and still achieve desirable results. In addition, the processes depicted in the accompanying figures do not necessarily require the particular order shown, or sequential order, to achieve desirable results. In some embodiments, multitasking and parallel processing may also be possible or may be advantageous.

The embodiments in the present specification are described in a progressive manner, and the same and similar parts among the embodiments are referred to each other, and each embodiment focuses on the differences from the other embodiments.

The above description is only for the purpose of illustrating the preferred embodiments of the present invention and is not to be construed as limiting the invention, and any modifications, equivalents, improvements and the like that fall within the spirit and principle of the present invention are intended to be included therein.

完整详细技术资料下载
上一篇:石墨接头机器人自动装卡簧、装栓机
下一篇:一种自动检测六龄牙龋齿的检测装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!