基于粒子群算法与投影方法的距离模糊抑制方法和装置

文档序号:9225 发布日期:2021-09-17 浏览:31次 英文

基于粒子群算法与投影方法的距离模糊抑制方法和装置

技术领域

本申请涉及雷达

技术领域

,涉及但不限于一种基于粒子群算法与投影方法的距离模糊抑制方法、装置。

背景技术

合成孔径雷达(Synthetic Aperture Radar,SAR)是一种主动式微波成像设备,相比光学雷达具有更强的穿透性,可以实现全天时、全天候对地观测,在遥感领域有着广泛的应用。SAR通过处理宽带脉冲信号及方位向多普勒信号取得高分辨率图像,由于天线俯仰向方向图(又称为天线方向图)不可避免的存在旁瓣,在接收回波时同样会接收到处于测绘带外部的回波,影响最终的图像质量,这种干扰被称为距离模糊。在以混合圆极化模式为代表的全极化模式下,部分距离模糊分量会变得极为强烈,严重的限制了SAR的性能,必须引入距离模糊抑制方法加以改善。

发明内容

有鉴于此,本申请实施例提供一种基于粒子群算法与投影方法的距离模糊抑制方法、装置。

第一方面,本申请实施例提供一种基于粒子群算法与投影方法的距离模糊抑制方法,所述方法包括:获取上次迭代中,样本群的每一粒子样本对应的掩模、接收权值和接收方向图;根据预设的雷达信号参数值,以及上次迭代中,每一所述粒子样本对应的掩模、接收权值和接收方向图,确定本次迭代中,对应粒子样本对应的接收方向图;根据本次迭代中,每一所述粒子样本对应的接收方向图,确定对应粒子样本的适应度;根据每一所述粒子样本的适应度,对粒子样本进行排序,确定本次迭代最优粒子样本;在所述本次迭代最优粒子样本的适应度不满足特定条件的情况下,更新样本群并进行新一轮迭代,重复迭代直至所述最优粒子样本的适应度满足所述特定条件。

第二方面,本申请实施例提供一种基于粒子群算法与投影方法的距离模糊抑制装置,包括:获取模块,用于获取上次迭代中,样本群的每一粒子样本对应的掩模、接收权值和接收方向图;第一确定模块,用于根据预设的雷达信号参数值,以及上次迭代中,每一所述粒子样本对应的掩模、接收权值和接收方向图,确定本次迭代中,对应粒子样本对应的接收方向图;第二确定模块,用于根据本次迭代中,每一所述粒子样本对应的接收方向图,确定对应粒子样本的适应度;第三确定模块,用于根据每一所述粒子样本的适应度,对粒子样本进行排序,确定本次迭代最优粒子样本;更新模块,用于在所述本次迭代最优粒子样本的适应度不满足特定条件的情况下,更新样本群并进行新一轮迭代,重复迭代直至所述最优粒子样本的适应度满足所述特定条件。

第三方面,本申请实施例提供一种电子设备,包括存储器和处理器,所述存储器存储有可在处理器上运行的计算机程序,所述处理器执行所述程序时实现本申请实施例任一所述基于粒子群算法与投影方法的距离模糊抑制方法中的步骤。

第四方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现本申请实施例任一所述基于粒子群算法与投影方法的距离模糊抑制方法中的步骤。

本申请实施例中,通过根据上次迭代中粒子样本的掩模、接收权值和接收方向图以及预设的雷达信号参数值,确定本次迭代中,对应粒子样本的接收方向图,并根据本次迭代中,粒子样本的接收方向图,确定粒子样本的适应度;因此,可以根据粒子样本的适应度,从多个粒子样本中确定出本次迭代最优粒子样本,通过本次迭代最优粒子样本的适应度对样本群进行更新并进行新一轮迭代,进而对粒子样本的掩模进行更新,以更新粒子样本的适应度,并根据粒子样本更新后的适应度,从更新后的粒子样本中确定出最优粒子样本,直至最优粒子样本的适应度满足特定条件,从而可以采用粒子群算法进行迭代优化,本申请实施例可以通过调整排序标准,对最优粒子样本进行有效的筛选,相较传统掩模设计方法灵活性强,本申请实施例收敛性好,相比传统掩模设计方法有着更好的普适性。

附图说明

图1为本申请实施例提供的一种基于粒子群算法与投影方法的距离模糊抑制方法的流程示意图;

图2为本申请实施例提供的一种基于粒子群算法与投影方法的距离模糊抑制方法的算法示意图;

图3为本申请实施例提供的一种基于粒子群算法与投影方法的针对混合圆极化的距离模糊抑制方法的流程示意图;

图4为本申请一个实施例优化前后的接收方向图的示意图;

图5为本申请一个实施例优化前后的接收方向图权值幅值的示意图;

图6为本申请一个实施例优化前后的距离模糊水平的示意图;

图7为本申请另一个实施例优化前后的接收方向图的示意图;

图8为本申请另一个实施例优化前后的接收方向图权值幅值的示意图;

图9为本申请另一个实施例优化前后的距离模糊水平的示意图;

图10为本申请实施例提供的一种天线方向图的生成方法示意图;

图11为本申请实施例一种基于粒子群算法与投影方法的距离模糊抑制装置的组成结构示意图;

图12为本申请实施例电子设备的一种硬件实体示意图。

具体实施方式

下面结合附图和实施例对本申请的技术方案进一步详细阐述。

图1为本申请实施例提供的一种基于粒子群算法与投影方法的距离模糊抑制方法的流程示意图,如图1所示,该方法包括:

步骤102:获取本次迭代中,样本群的每一粒子样本对应的掩模;

其中,样本群又可以称为粒子群,所述粒子群由多个粒子样本组成,每个样本粒子均为一个向量;在一个实施例中,所述粒子群可以由N个粒子样本组成,所述粒子样本Sn可以用如下公式(1)表示:

需要说明的是,可以按照预先设计的规则,对每个粒子样本进行如下公式(2)所示的映射,得到每一粒子样本对应的掩模MU,ML

其中,MU和ML分别为上掩模和下掩模,所述上掩模和下掩模又可以称为第一掩模和第二掩模。

步骤104:根据预设的雷达信号参数值,以及本次迭代中,每一所述粒子样本对应的掩模,应用投影方法确定对应粒子样本的接收权值与接收方向图;

其中,所述预设的雷达信号参数值为预先确定并存储的雷达的信号参数值,所述雷达信号参数值与粒子样本无关;所述雷达信号参数值可以分为目标波位信号参数、SAR系统参数和自定义参数等。

其中,所述目标波位信号参数可以包括所选波位的扫描范围、脉宽、PRF(pulserepetition frequency,脉冲重复频率)、发射权值、发射方向图和极化模式等;所述目标波位信号参数与SAR相关,并且随波位变化。

所述SAR系统参数可以包括SAR系统的中心频率、高程向阵元数、阵元间距、天线安装角和单元方向图等;所述SAR系统参数与SAR相关,不随波位变化。

所述自定义参数包括粒子样本的数量、l和m的取值、最大迭代次数等;所述自定义参数不与SAR相关,不随波位变化。

其中,在第一次迭代中,每一粒子样本的接收权值可以均为1,在后续的迭代过程中,每一粒子样本的接收权值可以不断进行更新;天线方向图又称辐射方向图或者远场方向图,可以是指在离雷达的天线一定距离处,辐射场的相对场强(归一化模值)随方向变化的图形,通常采用通过天线最大辐射方向上的两个相互垂直的平面方向图来表示;所述天线方向图包括发射方向图和接收方向图。

步骤106:根据每一所述粒子样本的接收方向图,确定对应粒子样本的适应度;

需要说明的是,所述适应度包括但不限于用于表征对所述接收方向图的距离模糊的抑制程度;在所述雷达的发射方向图已知的情况下,可以根据确定出的接收方向图,确定出雷达的双程方向图,在一个实施例中,可以根据每一所述粒子样本的双程方向图,确定对应粒子样本的适应度;在另一个实施例中,还可以根据预设的雷达信号参数值和每一所述粒子样本的双程方向图,确定对应粒子样本的适应度。

步骤108:根据每一所述粒子样本的适应度,对粒子样本进行排序,确定本次迭代最优粒子样本;

其中,可以按照粒子样本的适应度与预设的参考适应度之间的差值,对粒子样本进行排序,将最接近预设的参考适应度的适应度对应的粒子样本确定为本次迭代最优粒子样本,也可以按照粒子样本的适应度之间的大小关系,将最大或者最小的适应度对应的粒子样本确定为本次迭代最优粒子样本;还可以根据粒子样本的适应度,按照预设的评分标准,对粒子样本进行评分排序,并将评分最高的粒子样本确定为本次迭代最优粒子样本;另外,所述评分标准可以灵活进行调整,以对最优结果(本次迭代最优粒子样本)进行有效的筛选。

步骤110:在所述本次迭代最优粒子样本的适应度不满足特定条件的情况下,更新样本群并进行新一轮迭代,重复迭代直至所述最优粒子样本的适应度满足所述特定条件。

其中,所述特定条件可以是本次迭代最优粒子样本的适应度在预设的适应度范围之内,所述特定条件又可以是本次迭代确定出的最优粒子样本的适应度与上次迭代确定出的最优粒子样本的适应度之间的差值在预设的差值范围之内,所述特定条件还可以是迭代次数达到预设的迭代次数阈值(即最大迭代次数)。

图2为本申请实施例提供的一种基于粒子群算法与投影方法的距离模糊抑制方法的算法示意图,参见图2,可以采用粒子群算法对样本群进行初始化和更新。

在第一次的迭代过程中,可以先对样本群进行初始化,可以根据给定的粒子样本的数量N,随机生成初始粒子样本s1,…,sN(即粒子1至粒子N),此时可以按照预先设计的规则,将每个粒子样本映射到掩模(掩模1至掩模N)中,每一掩模中包括上掩模MU和下掩模ML;利用投影方法,根据预设的雷达信号参数值和每一所述粒子样本对应的初始掩模和初始接收权值,确定对应粒子样本对应的接收方向图;根据每一所述粒子样本对应的接收方向图,利用适应度函数,确定对应粒子样本的初始适应度;可以根据粒子样本的初始适应度,对粒子样本进行评分排序,以从N个粒子样本中确定出第一次迭代中的最优粒子样本,所述第一次迭代中的最优粒子样本又可以称为本次迭代最优粒子样本。

在所述本次迭代最优粒子样本的适应度不满足特定条件的情况下,可以利用所述本次迭代最优粒子样本的适应度对样本群进行更新并进行第二次迭代,需要说明的是,在第一次迭代过程中对样本群进行更新可以生成更新后的粒子样本s1,…,sN,此时可以仍然按照预设设计的规则,将每个更新后的粒子样本映射到掩模中,此时,由于粒子样本发生了更新,粒子样本对应的掩模也对应发生了更新,粒子样本更新后的掩模为第二次迭代中粒子样本对应的掩模。

在第二次的迭代过程中,利用投影算法,根据预设的雷达信号参数值和第一次迭代中每一所述粒子样本对应的接收方向图和初始接收权值,以及第二次迭代中粒子样本对应的掩模,确定第二次迭代中对应粒子样本的接收方向图;利用适应度函数,确定对应粒子样本的适应度;可以根据粒子样本的适应度,对粒子样本进行评分排序,以从N个粒子样本中确定出最优粒子样本。

在所述最优粒子样本的适应度不满足特定条件的情况下,可以继续进行迭代,直至所述最优粒子样本的适应度满足特定条件,则停止迭代。

本申请实施例中,通过根据本次迭代中粒子样本的掩模以及预设的雷达信号参数值,应用投影方法确定对应粒子样本的接收权值与接收方向图,并根据粒子样本的接收方向图,确定粒子样本的适应度;因此,可以根据粒子样本的适应度,从多个粒子样本中确定出本次迭代最优粒子样本,通过本次迭代最优粒子样本的适应度对样本群进行更新并进行新一轮迭代,进而对粒子样本的掩模进行更新,以更新粒子样本的适应度,并根据粒子样本更新后的适应度,从更新后的粒子样本中确定出最优粒子样本,直至最优粒子样本的适应度满足特定条件,从而可以采用粒子群算法进行迭代优化,本申请实施例可以通过调整排序标准,对最优粒子样本进行有效的筛选,相较传统掩模设计方法灵活性强,本申请实施例收敛性好,相比传统掩模设计方法有着更好的普适性。

本申请实施例还提供一种基于粒子群算法与投影方法的距离模糊抑制方法,所述方法包括:

步骤S202:获取本次迭代中,样本群的每一粒子样本对应的掩模;

其中,假设本次迭代为第i+1次迭代,则粒子样本对应的掩模可以表示为MU (i+1)和ML (i+1),粒子样本对应的接收权值可以表示为A(i+1),粒子样本对应的接收方向图可以表示为F(i+1)

步骤S204:根据预设的雷达信号参数值,以及本次迭代中,每一所述粒子样本对应的掩模和上次迭代中每一所述粒子样本的接收方向图,确定本次迭代中对应粒子样本的权值差值;

其中,本次迭代中对应粒子样本的权值差值可以表示为ΔA(i+1),上次迭代中粒子样本的接收方向图可以表示为F(i)

步骤S206:根据所述预设的雷达信号参数值、本次迭代中每一所述粒子样本的权值差值,以及上次迭代中,每一所述粒子样本的接收权值,确定本次迭代中对应粒子样本的接收权值;

其中,上次迭代中,每一所述粒子样本的接收权值可以表示为A(i),本次迭代中对应粒子样本的接收权值可以表示为A(i+1)

步骤S208:根据所述预设的雷达信号参数值和本次迭代中,每一所述粒子样本的接收权值,确定本次迭代中对应粒子样本对应的接收方向图;

步骤S210:根据本次迭代中,每一所述粒子样本对应的接收方向图,确定对应粒子样本的适应度;

步骤S212:根据每一所述粒子样本的适应度,对粒子样本进行排序,确定本次迭代最优粒子样本;

步骤S214:在所述本次迭代最优粒子样本的适应度不满足特定条件的情况下,更新样本群并进行新一轮迭代,重复迭代直至所述最优粒子样本的适应度满足所述特定条件。

本申请实施例中,通过先确定出粒子样本的权值差值,再根据权值差值,对粒子样本的接收权值进行更新,得到更新后的接收权值,并利用更新后的接收权值,对粒子样本的接收方向图进行更新,从而能够更准确地不断对粒子样本的适应度进行更新,直至最优粒子样本的适应度满足特定条件。

本申请实施例还提供一种基于粒子群算法与投影方法的距离模糊抑制方法,所述方法包括:

步骤S302:获取上次迭代中,样本群的每一粒子样本的接收权值和接收方向图,以及本次迭代中每一粒子样本对应的掩模;

步骤S304:根据上次迭代中,每一所述粒子样本的接收方向图,以及本次迭代中,每一所述粒子样本对应的掩模,确定本次迭代中对应粒子样本的方向图差值;

其中,本次迭代中对应粒子样本的方向图差值可以表示为ΔF(i+1)。

步骤S306:根据预设的雷达信号参数值和本次迭代中每一所述粒子样本的方向图差值,确定上次迭代中对应粒子样本的权值差值;

步骤S308:根据所述预设的雷达信号参数值、上次迭代中,每一所述粒子样本对应的接收权值,以及本次迭代中,每一所述粒子样本的权值差值,确定本次迭代中对应粒子样本的接收权值;

步骤S310:根据预设的雷达信号参数值,确定传递关系矩阵;

其中,所述传递关系矩阵可以表示为T。

步骤S312:根据所述传递关系矩阵和本次迭代中,每一所述粒子样本的接收权值,确定本次迭代中,对应粒子样本的接收方向图;

步骤S314:根据本次迭代中,每一所述粒子样本的接收方向图,确定对应粒子样本的适应度;

步骤S316:根据每一所述粒子样本的适应度,对粒子样本进行排序,确定本次迭代最优粒子样本;

步骤S318:在所述本次迭代最优粒子样本的适应度不满足特定条件的情况下,更新样本群并进行新一轮迭代,重复迭代直至所述最优粒子样本的适应度满足所述特定条件。

本申请实施例中,通过先计算粒子样本的方向图差值,再根据粒子样本的方向图差值,计算粒子样本的权值差值,从而能够更准确地计算粒子样本的权值差值;另外,先根据预设的雷达信号参数值,确定传递关系矩阵,再根据传递关系矩阵和粒子样本的接收权值,确定粒子样本的接收方向图,从而使得确定出的粒子样本的接收方向图更加准确。

本申请实施例还提供一种基于粒子群算法与投影方法的距离模糊抑制方法,所述方法包括:

步骤S402:获取上次迭代中,样本群的每一粒子样本的接收权值和接收方向图,以及本次迭代中每一粒子样本对应的掩模;

其中,所述掩模包括第一掩模和第二掩模;所述第一掩模可以表示为MU,所述第二掩模可以表示为ML,上次迭代中,粒子样本对应的接收权值可以表示为A(i),粒子样本对应的接收方向图可以表示为F(i)

步骤S404:根据上次迭代中每一所述粒子样本对应的接收方向图,确定上次迭代中对应粒子样本对应的接收方向图的最大值;

其中,上次迭代中对应粒子样本对应的接收方向图的最大值可以表示为maxF。

步骤S406:对上次迭代中每一所述粒子样本对应的接收方向图进行归一化处理,得到上次迭代中对应粒子样本对应的接收方向图的归一化方向图;

其中,上次迭代中对应粒子样本对应的接收方向图的归一化方向图可以表示为Fn

步骤S408:根据本次迭代中所述第一掩模、所述第二掩模和上次迭代中每一所述粒子样本的归一化方向图,确定上次迭代中对应粒子样本对应的接收方向图的部分方向图;

其中,上次迭代中对应粒子样本对应的接收方向图的部分方向图可以表示为PM{|Fn|},则粒子样本对应的部分方向图可以用公式(3)表示为:

步骤S410:根据上次迭代中每一所述粒子样本对应的接收方向图的最大值、归一化方向图和部分方向图,确定本次迭代中对应粒子样本的方向图差值;

其中,假设本次迭代中对应粒子样本的方向图差值表示为ΔF,则粒子样本对应的方向图差值可以用公式(4)表示为:

ΔF=max F(|Fn|-PM{|Fn|})(Fn/|Fn|) (4);

其中,|Fn|表示Fn的绝对值。

步骤S412:获取下视角采样序列;所述下视角采样序列中包括多个下视角在远场球坐标系中的坐标;

其中,在参考坐标系中,可以根据获取到的目标波位工作指令,确定雷达的下视角的变化范围,所述下视角的变化范围可以表示为[αminmax],在下视角的变化范围内可以对下视角进行N点均匀采样,获得下视角采样序列α10,…,αN0

步骤S414:根据所述下视角采样序列和波数,将远场球坐标系转换为直角坐标系,并确定每一所述下视角在所述直角坐标系中的坐标;

其中,波数等于真实频率除以光速,即波长(λ)的倒数,波数可以用k0表示;可以对远场球坐标系进行如下公式(5)和公式(6)所示的转换:

u=k0sinθcosφ (5);

v=k0sinθsinφ (6);

其中,可以根据上述公式(5)和公式(6)确定所述下视角采样序列中的下视角在直角坐标系中的坐标(uij,vij)。

步骤S416:根据每一所述下视角在所述直角坐标系中的坐标,确定所述雷达的多个阵元中每一所述阵元的远场方向图;

其中,可以用Ek(uij,vij)表示第k个阵元的远场方向图。

步骤S418:获取每一所述阵元在参考坐标系中的坐标;

其中,可以用(xk,yk)表示第k个阵元在参考坐标系中的坐标。

步骤S420:根据每一所述阵元的远场方向图和对应阵元在参考坐标系中的坐标,确定传递关系矩阵;

其中,假设传递关系矩阵为T矩阵,则传递关系矩阵可以用如下公式(7)表示:

进一步地,假设传递关系矩阵记为T(i,j),则传递关系矩阵可以用如下公式(8)表示:

步骤S422:根据传递关系矩阵和本次迭代中每一所述粒子样本的方向图差值,确定本次迭代中对应粒子样本的权值差值;

其中,本次迭代中每一所述粒子样本的权值差值ΔA可以用公式(9)表示为:

ΔA=(THT)-1THΔF (9);

其中,TH表示T矩阵的共轭转置矩阵,(THT)-1表示(THT)的逆矩阵。

步骤S424:根据步长、以及本次迭代中,每一所述粒子样本的权值差值和上次迭代中每一所述粒子样本的接收权值,确定本次迭代中对应粒子样本的接收权值;

其中,假设步长为C1,则本次迭代中对应粒子样本的接收权值A(i+1)可以用公式(10)表示为:

A(i+1)=A(i)+C1ΔA (10);

步骤S426:根据所述传递关系矩阵和本次迭代中,每一所述粒子样本的接收权值,确定本次迭代中,对应粒子样本对应的接收方向图;

其中,本次迭代中,对应粒子样本对应的接收方向图可以用公式(11)表示为:

F(i+1)=TA(i+1) (11);

同理,上次迭代中,对应粒子样本对应的接收方向图可以用公式(12)表示为:

F(i)=TA(i) (12);

步骤S428:根据本次迭代中,每一所述粒子样本对应的接收方向图,确定本次迭代中,对应粒子样本的测量指标;

其中,所述测量指标包括以下至少三种:距离模糊、主瓣宽度和旁瓣水平;由于粒子样本的发射方向图已知,因此,可以根据粒子样本的发射方向图的增益和接收方向图的增益,确定粒子样本的双程方向图的增益,进而根据粒子样本的双程方向图的增益,确定对应粒子样本的测量指标。

步骤S430:根据本次迭代中,每一所述粒子样本的测量指标和预设的适应度函数,确定对应粒子样本的适应度;

步骤S432:根据每一所述粒子样本的适应度,对粒子样本进行排序,确定本次迭代最优粒子样本;

步骤S434:在所述本次迭代最优粒子样本的适应度不满足特定条件的情况下,更新样本群并进行新一轮迭代,重复迭代直至所述最优粒子样本的适应度满足所述特定条件。

本申请实施例中,在确定传递关系矩阵时,可以根据每一所述阵元的远场方向图和对应阵元在参考坐标系中的坐标,确定传递关系矩阵,从而可以提高确定出的传递关系矩阵的准确度。

在确定方向图差值时,可以根据接收方向图的最大值、归一化方向图、第一掩模和第二掩模,确定粒子样本的方向图差值,从而能够更准确地确定粒子样本的方向图差值。

在确定粒子样本的适应度时,可以先根据粒子样本的接收方向图,确定粒子样本的测量指标,再将粒子样本的测量指标输入至预设的适应度函数中,以使适应度数据输出对应粒子样本的适应度,从而能够更准确地确定粒子样本的适应度。

本申请实施例还提供一种基于粒子群算法与投影方法的距离模糊抑制方法,所述方法包括:

步骤S502:获取上次迭代中,样本群的每一粒子样本的接收权值和接收方向图,以及本次迭代中每一粒子样本对应的掩模;

其中,所述掩模包括第一掩模和第二掩模。

步骤S504:根据上次迭代中每一所述粒子样本对应的接收方向图,确定上次迭代中对应粒子样本对应的接收方向图的最大值;

步骤S506:对上次迭代中每一所述粒子样本对应的接收方向图进行归一化处理,得到上次迭代中对应粒子样本对应的接收方向图的归一化方向图;

步骤S508:根据本次迭代中所述第一掩模、所述第二掩模和上次迭代中每一所述粒子样本的归一化方向图,确定上次迭代中对应粒子样本对应的接收方向图的部分方向图;

步骤S510:根据上次迭代中每一所述粒子样本对应的接收方向图的最大值、归一化方向图和部分方向图,确定本次迭代中对应粒子样本的方向图差值;

步骤S512:获取下视角采样序列;所述下视角采样序列中包括多个下视角在远场球坐标系中的坐标;

步骤S514:根据所述下视角采样序列和波数,将远场球坐标系转换为直角坐标系,并确定每一所述下视角在所述直角坐标系中的坐标;

步骤S516:根据每一所述下视角在所述直角坐标系中的坐标,确定所述雷达的多个阵元中每一所述阵元的远场方向图;

步骤S518:获取每一所述阵元在参考坐标系中的坐标;

步骤S520:根据每一所述阵元的远场方向图和对应阵元在参考坐标系中的坐标,确定传递关系矩阵;

步骤S522:根据传递关系矩阵和上次迭代中每一所述粒子样本的方向图差值,确定上次迭代中对应粒子样本的权值差值;

步骤S524:根据步长、以及上次迭代中,每一所述粒子样本的权值差值和接收权值,确定本次迭代中对应粒子样本的接收权值;

步骤S526:根据所述传递关系矩阵和本次迭代中,每一所述粒子样本的接收权值,确定本次迭代中,对应粒子样本对应的接收方向图;

步骤S528:根据本次迭代中,每一所述粒子样本对应的接收方向图,确定本次迭代中,对应粒子样本的瓣宽度和旁瓣水平;

步骤S530:获取下视角采样序列;所述下视角采样序列中包括多个下视角在远场球坐标系中的坐标;

步骤S532:根据所述下视角采样序列、地球半径和所述雷达的轨道高度,确定斜距序列;

其中,假设地球半径为Re,所述雷达的轨道高度为H,则可以根据如下公式(10)确定斜距序列:

其中,α表示下视角序列中的下视角,R表示组成斜距序列的斜距,因此,可根据下视角序列中的每一所述下视角,确定出对应的斜距,并根据确定出的斜距组成斜距序列R10,…,RN0

步骤S534:根据所述斜距序列、所述脉冲重复频率、所述模糊区编号和所述光速,确定模糊斜距序列;

其中,所述模糊斜距序列为模糊区对应的斜距Ra组成的序列;所述脉冲重复频率可以用PRF表示,所述模糊区编号可以用j表示,所述光速可以用c表示,所述斜距序列中的斜距可以用Rsw表示,则斜距Ra可以用如下公式(14)表示:

根据公式(11),对于斜距序列中的第i个元素Ri0,可以记其对应的模糊斜距序列中的斜距为Rij(j=1,…,M),下视角为αij(j=1,…,M)。

步骤S536:根据所述模糊斜距序列,确定入射角序列;

其中,可以确定与所述模糊斜距序列中的斜距Rij对应的入射角ηij,并可以根据入射角ηij组成入射角序列。

步骤S538:根据所述入射角序列和所述经验参数,确定反射率序列;

其中,假设所述经验参数包括p1,p2,p3,p4,p5和p6,入射角ηij对应的反射率为反射率为可以用如下公式(15)表示:

其中,可以根据得到的反射率为组成反射率序列。

步骤S540:根据所述入射角序列、所述反射率序列、所述模糊斜距序列、本次迭代中,每一所述粒子样本对应的接收方向图,确定本次迭代中,对应粒子样本的距离模糊。

其中,粒子样本的双程方向图在αij方向的增益可以表示为在所述雷达的发射方向图已知的情况下,可以根据确定出的接收方向图,确定出雷达的双程方向图的增益,假设测量指标为距离模糊,距离模糊为RASR,则RASR可以用如下公式(16)表示:

其中,可以用如下公式(17)表示,Si可以用如下公式(18)表示:

步骤S542:根据本次迭代中,每一所述粒子样本的测量指标和预设的适应度函数,确定对应粒子样本的适应度;

其中,可以将每一粒子样本的测量指标作为输入调用预先定义的适应度函数,计算并输出对应粒子样本的适应度。

步骤S544:根据每一所述粒子样本的适应度,对粒子样本进行排序,确定本次迭代最优粒子样本;

步骤S546:在所述本次迭代最优粒子样本的适应度不满足特定条件的情况下,更新样本群并进行新一轮迭代,重复迭代直至所述最优粒子样本的适应度满足所述特定条件。

本申请实施例中,根据所述入射角序列、所述反射率序列、所述模糊斜距序列、和每一所述粒子样本的接收方向图,确定对应粒子样本的测量指标,从而能够提高粒子样本的测量指标的准确度。

基于天线方向图合成的距离模糊抑制方法根据距离模糊分布寻找在对应位置存在零陷的天线方向图,从而降低接收的距离模糊能量水平。这类方法不提升系统的复杂性,可以在保证天线增益、波束宽度、旁瓣水平满足要求的情况下有效抑制距离模糊。此外,这类方法的应用不影响方位模糊,可以从整体上优化SAR系统的模糊特性,因而适用于以混合圆极化模式为代表的全极化模式SAR的模糊性能优化。

判断这类距离模糊抑制方法性能的标准是计算资源占用量、算法速度、对方向图指标的控制能力,同时兼顾这些要求十分困难。当前已有的算法均仅关注了其中一方面,在实际应用中必须根据具体需求进行取舍。

本申请实施例设计了一种全新的基于粒子群算法与投影方法的针对混合圆极化的距离模糊抑制方法,该方法将粒子群算法与投影算法结合,同时优化掩模和天线方向图以获取最优结果。这种方法可以有效的优化混合圆极化模式SAR系统的距离模糊特性,且同样适用于其它极化模式。此外,该方法相较掩模设计方法适用面广,灵活性强,相应结果可直接应用于传统相控阵天线,有着极强的工程应用价值。

图3为本申请实施例提供的一种基于粒子群算法与投影方法的针对混合圆极化的距离模糊抑制方法,所述方法包括:

步骤301:获取目标波位工作指令;

步骤302:根据所述目标波位工作指令确定目标波位信号参数;

步骤303:初始化测量参数;

其中,所述测量参数包括所述目标波位信号参数、SAR系统参数和自定义参数;所述SAR系统参数可以为天线尺寸、信号带宽、脉冲重复频率、扫描波位数和波位位置等。

步骤304:根据所述各测量参数初始化或更新本轮迭代的样本群;

步骤305:根据所述样本群使用投影算法计算各粒子样本的对应天线方向图并测量指标;

步骤306:根据天线方向图的测量指标判断继续迭代或将本轮迭代最优结果作为最优权值。

需要说明的是,上述实施例中,步骤304中根据所述各测量参数初始化或更新本轮迭代的样本群,包括:

在第一次迭代开始时,对样本群进行初始化,根据给定总样本数N,确定样本位置及速度的取值边界,根据边界条件随机生成初始样本向量s1,…,sN和对应的初始速度向量v1,…,vN,样本向量的设计必须满足存在样本与掩模(即关键参数值μ,ρ,σ)一一对应规则这一条件。

在第二次及之后的迭代中,对样本群进行更新。第n+1次迭代的样本更新可以用公式(19)和公式(20)表示:

其中,ω、c1、c2为调控迭代性能的参数,ωn为第n次迭代时ω的值,p为单个粒子样本的历史最优位置,表示第n次迭代时粒子样本i的最优位置,g为样本群的历史全局最优位置;ω称为惯性因子其值为非负,较大时,全局寻优能力强,局部寻优能力强;较小时,全局寻优能力弱,局部寻优能力强;通过调整ω的大小,可以对全局寻优性能和局部寻优性能进行调整。c1和c2,称为加速常数,前者为每个粒子样本的个体学习因子,后者为每个粒子样本的社会学习因子。r1和r2表示区间[0,1]上的随机数;表示第n次迭代时粒子样本i的速度;表示第n+1次迭代时粒子样本i的速度;表示第n次迭代时粒子样本i的位置;表示第n+1次迭代时粒子样本i的位置。

上述实施例中,步骤305中根据所述样本群使用投影算法计算各粒子样本的对应天线方向图并测量指标,包括:

构建复激励系数[A]与方向图矩阵[F]的传递关系矩阵[T],方向图矩阵[F]与传递关系矩阵和负激励系数之间的关系可以用如下公式(21)表示:

其中,复激励系数又可以称为接收权值;参见公式(7),天线方向图进一步可以用公式(22)表示:

引入投影算子,通过迭代寻找符合要求的结果,根据样本获取对应上掩模MU及下掩模ML,可以利用公式(4)对方向图差值进行计算:

ΔF=max F(|Fn|-PM{|Fn|})(Fn/|Fn|) (4);

其中,粒子样本对应的接收方向图的部分方向图可以表示为PM{|Fn|},则粒子样本对应的部分方向图可以用公式(3)表示为:

其中,在上述迭代优化公式(3)中,MU为上掩模,ML为下掩模,Fn为归一化方向图。

其中,可以根据方向图差值计算权值更新差值,所述权值更新差值又可以称为权值差值,权值差值ΔA可以用公式(9)表示为:

ΔA=(THT)-1THΔF (9);

其中,可以利用权值差值对接收权值进行更新,假设步长为C1,本次迭代中对应粒子样本的接收权值A(i),则本次迭代中对应粒子样本的接收权值A(i+1)可以用公式(10)表示为:

A(i+1)=A(i)+C1ΔA (10);

上述实施例中,可以根据传递关系矩阵T(i,j)和每一粒子样本的接收权值A(i+1)确定雷达天线的对应粒子样本的接收方向图;根据每一粒子样本的接收方向图确定对应粒子样本的测量指标,并根据测量指标判断继续迭代或将本轮迭代最优结果作为最优权值。

上述实施例中,步骤306中,根据天线方向图测量指标并判断继续迭代或将本轮迭代最优结果作为最优权值,包括:

其中,假设测量指标为距离模糊,距离模糊为RASR,SAR系统工作时,存在距离模糊区域对应的斜距Ra可以用如下公式(14)表示:

RASR可以用如下公式(18)表示:

其中,可以用如下公式(19)表示,Si可以用如下公式(20)表示:

其中,所述测量指标还可以包括主瓣宽度和旁瓣水平,可以综合RASR、主瓣宽度和旁瓣水平等测量指标根据要求对粒子样本进行评分排序,在最优结果满足要求时结束迭代,否则继续迭代更新样本。

在一个实施例中,通过抑制效果对本申请的技术方案进行进一步的描述与说明。这里对混合圆极化模式中距离模糊问题最为严重的特例进行优化,此时收发信号的两个极化模式近似为相互正交的线极化。

本实施例中,设定卫星天线高程向阵元数为22,工作于L波段。选定波位PRF为3505Hz,天线安装角30.5°,观测波束近端与远端视角分别为21.26°与23.69°,轨道高度607km。每次迭代中样本结果将按是否满足约束条件进行分组并根据距离模糊特性进行排序。

图4展示了本实施例优化前后的接收方向图,参见图4,优化后的接收方向图401相较于未优化的接收方向图402,位于模糊区域的旁瓣403显著下降。图5展示了本实施例优化前后的接收方向图权值幅值,参见图5,相较于未优化的接收方向图的权值幅值502,优化后的接收方向图的权值幅值501在工程上是可实现的。

图6展示了本实施例优化前后的距离模糊水平,参见图6,相较于未优化的距离模糊602,优化后的距离模糊601得到了有效的抑制,上述结果证明了本申请可以有效的优化混合圆极化模式下的距离模糊。通过优化单极化模式下展宽波束的距离模糊进一步描述说明本发明的技术方案同样适用于其它极化模式。同样设定卫星天线高程向阵元数为22,工作于L波段。选定波位PRF为1477Hz,天线安装角30.5°,观测波束近端与远端视角分别为14.33°与27.2°,轨道高度607km,参数初始化与筛选标准同上述实施例相同。

图7展示了本实施例优化前后的接收方向图,参见图7,优化后的接收方向图701相较于未优化的接收方向图702,在波束宽度满足要求的同时位于模糊区域的旁瓣703显著下降。图8展示了优化前后的接收方向图权值幅值,参见图8,相较于未优化的接收方向图的权值幅值802,优化后的接收方向图的权值幅值801在工程上是可实现的。图9展示了优化前后的距离模糊水平,参见图9,相较于未优化的接收方向图的距离模糊902,优化后的接收方向图的距离模糊901得到了有效的抑制。上述结果证明了本申请实施例在针对混合圆极化模式的同时同样适用于其它极化模式。

图10为本申请实施例提供的一种天线方向图的生成方法示意图;参见图10,可以根据预设的雷达信号参数值,以及本次迭代中,每一所述粒子样本对应的上掩模1001和下掩模1002,应用投影方法确定对应粒子样本的接收方向图1003,其中,主瓣宽度1004和旁瓣水平1005为所述接收方向图1003的测量指标,可以根据天线方向图的测量指标主瓣宽度1004或旁瓣水平1005判断继续迭代或将本轮迭代最优结果作为最优权值。

基于前述的实施例,本申请实施例提供一种基于粒子群算法与投影方法的距离模糊抑制装置,该装置包括所包括的各模块,可以通过电子设备中的处理器来实现;当然也可通过具体的逻辑电路实现;在实施的过程中,处理器可以为中央处理器(CPU,CentralProcessing Unit)、微处理器(MPU,Microprocessor Unit)、数字信号处理器(DSP,DigitalSignal Processing)或现场可编程门阵列(FPGA,Field Programmable Gate Array)等。

图11为本申请实施例一种基于粒子群算法与投影方法的距离模糊抑制装置的组成结构示意图,如图11所示,所述装置1100包括获取模块1101、第一确定模块1102、第二确定模块1103、第三确定模块1104和更新模块1105,其中:

获取模块1101,用于获取本次迭代中,样本群的每一粒子样本对应的掩模;第一确定模块1102,用于根据预设的雷达信号参数值,以及本次迭代中,每一所述粒子样本对应的掩模,应用投影方法确定对应粒子样本的接收权值与接收方向图;第二确定模块1103,用于根据每一所述粒子样本的接收方向图,确定对应粒子样本的适应度;第三确定模块1104,用于根据每一所述粒子样本的适应度,对粒子样本进行排序,确定本次迭代最优粒子样本;更新模块1105,用于在所述本次迭代最优粒子样本的适应度不满足特定条件的情况下,更新样本群并进行新一轮迭代,重复迭代直至所述最优粒子样本的适应度满足所述特定条件。

在一个实施例中,所述第一确定模块1102,包括:第一确定子模块,用于根据预设的雷达信号参数值,上次迭代中,每一所述粒子样本的接收方向图,以及本次迭代中,每一所述粒子样本对应的掩模,确定本次迭代中对应粒子样本的权值差值;第二确定子模块,用于根据所述预设的雷达信号参数值、上次迭代中,每一所述粒子样本对应的接收权值,以及本次迭代中,每一所述粒子样本的权值差值,确定本次迭代中对应粒子样本的接收权值;第三确定子模块,用于根据所述预设的雷达信号参数值和本次迭代中,每一所述粒子样本的接收权值,确定本次迭代中对应粒子样本的接收方向图。

在一个实施例中,所述第一确定子模块,包括:第一确定单元,用于根据上次迭代中,每一所述粒子样本的接收方向图,以及本次迭代中,每一所述粒子样本对应的掩模,确定本次迭代中对应粒子样本的方向图差值;第二确定单元,用于根据预设的雷达信号参数值和本次迭代中每一所述粒子样本的方向图差值,确定本次迭代中对应粒子样本的权值差值。

在一个实施例中,所述第三确定子模块,包括:第三确定单元,用于根据预设的雷达信号参数值,确定传递关系矩阵;第四确定单元,用于根据所述传递关系矩阵和本次迭代中,每一所述粒子样本的接收权值,确定本次迭代中,对应粒子样本的接收方向图。

在一个实施例中,所述预设的雷达信号参数值包括下视角采样序列、波数和所述雷达的每一阵元在参考坐标系中的坐标,所述第三确定单元,包括:第一获取子单元,用于获取下视角采样序列;所述下视角采样序列中包括多个下视角在远场球坐标系中的坐标;转换子单元,用于根据所述下视角采样序列和波数,将远场球坐标系转换为直角坐标系,并确定每一所述下视角在所述直角坐标系中的坐标;第一确定子单元,用于根据每一所述下视角在所述直角坐标系中的坐标,确定所述雷达的多个阵元中每一所述阵元的远场方向图;第二获取子单元,用于获取每一所述阵元在参考坐标系中的坐标;第二确定子单元,用于根据每一所述阵元的远场方向图和对应阵元在参考坐标系中的坐标,确定传递关系矩阵。

在一个实施例中,所述掩模包括第一掩模和第二掩模,所述第一确定单元,包括:第三确定子单元,用于根据上次迭代中每一所述粒子样本的接收方向图,确定上次迭代中对应粒子样本的接收方向图的最大值;第四确定子单元,用于对上次迭代中每一所述粒子样本的接收方向图进行归一化处理,得到上次迭代中对应粒子样本的接收方向图的归一化方向图;第五确定子单元,用于根据本次迭代中所述第一掩模、所述第二掩模,和上次迭代中每一所述粒子样本的归一化方向图,确定上次迭代中对应粒子样本的接收方向图的部分方向图;第六确定子单元,用于根据上次迭代中每一所述粒子样本的接收方向图的最大值、归一化方向图和部分方向图,确定本次迭代中对应粒子样本的方向图差值。

在一个实施例中,所述第二确定模块1103,包括:第四确定子模块,用于根据本次迭代中,每一所述粒子样本的接收方向图,确定本次迭代中,对应粒子样本的测量指标;第五确定子模块,用于根据本次迭代中,每一所述粒子样本的测量指标和预设的适应度函数,确定对应粒子样本的适应度。

在一个实施例中,所述测量指标包括以下至少三种:距离模糊、主瓣宽度和旁瓣水平。

在一个实施例中,所述测量指标为距离模糊,所述预设的雷达信号参数值包括下视角采样序列、地球半径、光速、所述雷达的轨道高度、所述雷达的脉冲重复频率、所述下视角采样序列中下视角的个数、所述雷达的模糊区编号、经验参数;

所述第四确定子模块,包括:获取单元,用于获取下视角采样序列;所述下视角采样序列中包括多个下视角在远场球坐标系中的坐标;第五确定单元,用于根据所述下视角采样序列、地球半径和所述雷达的轨道高度,确定斜距序列;第六确定单元,用于根据所述斜距序列、所述脉冲重复频率、所述模糊区编号和所述光速,确定模糊斜距序列;第七确定单元,用于根据所述模糊斜距序列,确定入射角序列;第八确定单元,用于根据所述入射角序列和所述经验参数,确定反射率序列;第九确定单元,用于根据所述入射角序列、所述反射率序列、所述模糊斜距序列、本次迭代中,每一所述粒子样本的接收方向图,确定本次迭代中,对应粒子样本的测量指标。

需要说明的是,本申请实施例中,如果以软件功能模块的形式实现上述的基于粒子群算法与投影方法的距离模糊抑制方法,并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得电子设备(可以是手机、平板电脑、台式机、个人数字助理、导航仪、数字电话、视频电话、电视机、传感设备等)执行本申请各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本申请实施例不限制于任何特定的硬件和软件结合。

以上装置实施例的描述,与上述方法实施例的描述是类似的,具有同方法实施例相似的有益效果。对于本申请装置实施例中未披露的技术细节,请参照本申请方法实施例的描述而理解。

对应地,本申请实施例提供一种电子设备,图12为本申请实施例电子设备的一种硬件实体示意图,如图12所示,该电子设备1200的硬件实体包括:包括存储器1201和处理器1202,所述存储器1201存储有可在处理器1202上运行的计算机程序,所述处理器1202执行所述程序时实现上述实施例基于粒子群算法与投影方法的距离模糊抑制方法中的步骤。

存储器1201配置为存储由处理器1202可执行的指令和应用,还可以缓存待处理器1202以及电子设备1200中各模块待处理或已经处理的数据(例如,图像数据、音频数据、语音通信数据和视频通信数据),可以通过闪存(FLASH)或随机访问存储器(Random AccessMemory,RAM)实现。

对应地,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述实施例中提供的基于粒子群算法与投影方法的距离模糊抑制方法中的步骤。

这里需要指出的是:以上存储介质和设备实施例的描述,与上述方法实施例的描述是类似的,具有同设备实施例相似的有益效果。对于本申请存储介质和方法实施例中未披露的技术细节,请参照本申请设备实施例的描述而理解。

应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。

需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。

在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。

上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元;既可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。另外,在本申请各实施例中的各功能单元可以全部集成在一个处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。

本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。或者,本申请上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得计算机设备(可以是手机、平板电脑、台式机、个人数字助理、导航仪、数字电话、视频电话、电视机、传感设备等)执行本申请各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、磁碟或者光盘等各种可以存储程序代码的介质。

本申请所提供的几个方法实施例中所揭露的方法,在不冲突的情况下可以任意组合,得到新的方法实施例。本申请所提供的几个产品实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的产品实施例。本申请所提供的几个方法或设备实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的方法实施例或设备实施例。

以上所述,仅为本申请的实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

完整详细技术资料下载
上一篇:石墨接头机器人自动装卡簧、装栓机
下一篇:一种图像目标针对性增强方法、装置、设备及存储介质

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!