一种红磷光电极及其制备方法和应用
技术领域
本发明属于光电催化能量转换领域,尤其涉及一种红磷光电极及其制备方法和应用。
背景技术
能源问题是当今人类面临的一大挑战。太阳光能是可再生的可持续发展的能源。如何开发和利用太阳光能是当今的重要研究课题。光电催化技术是一种结合光催化和电催化技术的高效利用太阳光能的技术。光电池由阳极和阴极组成。在光和电的驱动下,光照下一般由半导体组成的光阳极发产生光生正电极(空穴)和光生负电极(电子),电子会迁移到阴极,这个过程会产生电流和电能。而光阳极表面发生氧化反应,一般氧化水成为氧气。光阴极上电子会还原水产生清洁能源氢气。
目前,寻找与制备高效的光阳极材料是研究的重点,传统的金属氧化物或硫化物光阳极材料吸光范围窄,吸能吸收紫外光或一部分可见面。而且它们中电子与空穴的复合严重,产生的电流往往比较少(小于2mA/cm2)。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明第一个方面提出一种红磷光电极,能够产生电能和/或氢能。
本发明的第二个方面提出了一种上述红磷光电极的制备方法。
本发明的第三个方面提出了一种上述红磷光电极的应用。
根据本发明的第一个方面,提出了一种红磷光电极,包括基底,所述基底表面负载有结晶相红磷。
在本发明的一些实施方式中,所述红磷为纳米棒。
在本发明的一些优选的实施方式中,所述纳米棒的直径为100nm~1.0μm。
在本发明的一些优选的实施方式中,所述红磷的负载量为10mg~1000mg;进一步优选为0.01mg/cm2~10mg/cm2。
在本发明的一些优选的实施方式中,所述基底的长度为1.0cm~20.0cm,宽度为0.1cm~2.0cm。
在本发明的一些更优选的实施方式中,所述基底选自碳片、碳布、钨片、钼片、钨网中的任意一种。
根据本发明的第二个方面,提出了一种红磷光电极的制备方法,包括如下步骤:获取基底,在基底的表面上生长红磷。
在本发明的一些实施方式中,所述红磷采用热化学气相沉积法生长在基底上;所述热化学气相沉积法的过程为:将基底在真空下升温,进行红磷生长,生长完成后降温至室温。
本发明中,采用热化学气相沉积法将红磷先升华再凝华,使其在基底上生长出结晶相红磷纳米棒。
在本发明的一些优选的实施方式中,所述热化学气相沉积法在石英管中进行。
在本发明的一些优选的实施方式中,所述石英管的厚度为0.1mm~0.3mm,长度为10cm~30cm。
在本发明的一些更优选的实施方式中,所述热化学气相沉积法的过程中,将基底在真空下升温至500℃~600℃。
在本发明的一些更优选的实施方式中,所述升温的速率为(1~20)℃/min。
在本发明的一些更优选的实施方式中,所述降温的速率为(0.1~1.0)℃/min。
根据本发明的第三个方面,提出了一种红磷光电极在光电催化阳极材料的应用。
本发明中的红磷光电极作为光电催化中的阳极材料时,能产生光电流和/或氢能,具体来说,能产生最高为8mA/cm2的光电流和达到每小时1.89mL的氢气产量。
本发明的有益效果为:
1.本发明的红磷光电极组成简单,原料红磷价廉,有利于广泛推广。
2.本发明的红磷光电极制备方法简单,成本低。
3.本发明的红磷光电极应用于光电催化中的阳极材料时,能同时产生电能和氢能,产生最高为8.0mA/cm2的光电流和达到每小时1.89mL的氢气产量。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1中热处理前和热处理后石英管的照片及光电极电镜扫描图。
图2为本发明实施例1制得的钨网基底的结晶相红磷光电极的电镜扫描图。
图3为本发明实施例1制得的钨网基底的结晶相红磷光电极在光催化下产生电流的电流-电压关系图。
图4为本发明实施例1制得的钨网基底的结晶相红磷光电极在0.9V电压下的有光照和无光照下的电流图。
图5为实施例3制得的钨片基底的结晶相红磷光电极的电镜扫描图(b)及在光催化下产生电流的电流-电压关系图(a)。
图6为实施例4制得的钼片基底的结晶相红磷光电极的电镜扫描图(b)及在光催化下产生电流的电流-电压关系图(a)。
图7为实施例5制得的钛片基底的结晶相红磷光电极的电镜扫描图(a)及在光催化下产生电流的电流-电压关系图(a)。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例制备了一种钨网基底的结晶相红磷光电极(CP/W),具体过程为:
称取200mg红磷和一个1.0cm宽、20.0cm长的金属钨网基底,把它们密封在石英官中,抽真空。然后将石英管放进炉子中,以1.0℃/min升温速度升到550℃左右,保护15个小时后以0.1℃/min的速率降到常温。然后将石英管打破,取出基底,然后用水和乙醇洗干净,就制备出红磷光电极。
图1为热处理前和热处理后的石英管照片及电镜扫描图。从图1可看出,热处理后红磷沉积于钨网上。
对热处理后的红磷光电极进行电镜扫描,结果如图2所示。从图2可看出,生长于钨网上的红磷为纳米棒结构,直径为0.1μm~0.5μm,长为1.0μm~10.0μm。
实施例2
本实施例制备了一种钨片基底的结晶相红磷光电极(CP/W plate),具体过程为:
称取200mg红磷和一个1.0cm宽、3.0cm长、0.2cm厚的金属钨片基底,把它们密封在石英官中,抽真空。然后将石英管放进炉子中,以1.0℃/min升温速度升到550℃左右,保护15个小时后以0.1℃/min的速率降到常温。然后将石英管打破,取出基底,然后用水和乙醇洗干净,就制备出红磷光电极。
实施例3
本实施例制备了一种钼片基底的结晶相红磷光电极(CP/Mo plate),具体过程为:
称取200mg红磷和一个1.0cm宽、3.0cm长、0.2cm厚的金属钼片基底,把它们密封在石英官中,抽真空。然后将石英管放进炉子中,以1.0℃/min升温速度升到550℃左右,保护15个小时后以0.1℃/min的速率降到常温。然后将石英管打破,取出基底,然后用水和乙醇洗干净,就制备出红磷光电极。
实施例4
本实施例制备了一种钛片基底的结晶相红磷光电极(CP/Ti plate),具体过程为:
称取200mg红磷和一个1.0cm宽、3.0cm长、0.2cm厚的金属钛片基底,把它们密封在石英官中,抽真空。然后将石英管放进炉子中,以1.0℃/min升温速度升到550℃左右,保护15个小时后以0.1℃/min的速率降到常温。然后将石英管打破,取出基底,然后用水和乙醇洗干净,就制备出红磷光电极。
对比例1
本实施例制备了一种钨网基底的无定形红磷光电极(AP/W),具体过程为:
称取200mg红磷和一个1.0cm宽、20.0cm长的金属钨网基底,把它们密封在石英官中,抽真空。然后将石英管放进炉子中,以5.0℃/min升温速度升到550℃左右,保护15个小时后以10.0℃/min的速率降到常温。然后将石英管打破,取出基底,然后用水和乙醇洗干净,就制备出红磷光电极。
对比例2
本实施例制备了一种FTO导电玻璃(掺杂氟的SnO2导电玻璃)基底的无定形红磷光电极(AP/FTO),具体过程为:
称取200mg红磷和一个1.0cm宽、20.0cm长的FTO导电玻璃基底,把它们密封在石英官中,抽真空。然后将石英管放进炉子中,以5.0℃/min升温速度升到550℃左右,保护15个小时后以10.0℃/min的速率降到常温。然后将石英管打破,取出基底,然后用水和乙醇洗干净,就制备出红磷光电极。
试验例1
本试验例测试实施例1制得的钨网基底的结晶相红磷光电极(CP/W)、对比例1制得的钨网基底的无定形红磷光电极(AP/W)、对比例2制得的FTO导电玻璃基底的无定形红磷光电极(AP/FTO)在光电催化下产生电流的电流电压关系,各红磷光电极具体测试方法为:
把红磷光电极放置于H型电解池的一边,另外一边放对电极(铂片电极或石墨电极)和参比电极(银氯化银电极或饱和甘汞电极)。H型电解池中间用Nafion膜隔开。然后给用一个300W的氙灯照射红磷光电极,通过给红磷光电极拖加0.2V~2.0V的电压,以100s为周期交替对红磷光电极光照处理下和无光照处理,测试电压大小对电极产生的氢气量的影响。光电流的大小可以通过电流表或电化学工作站测量。而氢气将通过用岛津公司GC2014C气相色谱仪(带TCD热导检测器)来测量。结果如图3所示。
为进一步测试光照对实施例1制得的钨网基底的结晶相红磷光电极(CP/W)、对比例1制得的钨网基底的无定形红磷光电极(AP/W)、对比例2制得的FTO导电玻璃基底的无定形红磷光电极(AP/FTO)产生的影响电流情况,各红磷光电极采用前述方法,给红磷光电极施加0.9V的电压,以100s为周期对红磷光电极在光照处理下和无光照处理下产生电流的情况进行测试,结果如图4所示。
从图3可看出,实施例1制得的钨网基底的结晶相红磷光电极产生的电流达到8.0mA/cm2,比很多传统的金属氧化物光阳极都大。而有光处理时,光电极产生电流上升,无光处理时,光电极电流下降。
从图3~4可看出,相对于钨网上生长的无定形红磷(AP/W),钨网上生长的结晶相红磷(CP/W)的性能得到显著的提升,说明制备结晶相红磷是性能提升的关键。相对于FTO导电玻璃上生长的红磷(AP/FTO),钨网上生长的红磷性能也更高,说明选用钨等基底是制备高效红磷光电极的关键。
试验例2
本试验例测试实施例2~5制得的红磷光电极在不同电压下对电极产生电流情况,具体测试方法与试验例1相同,实施例2~5制得的红磷光电极的电镜扫描图和不同电压下对电极产生电流情况分别对应如图5~图7所示。
从图5~图7可看出,除了钨网外,钨片、钼片和钛片等都可以用得红磷生长的基底,并得到良好的性能。尤其是相对于钛片,钨片和钼性上生长的红磷光电极性能更好。
试验例3
本试验例测试实施例1制得的钨网基底的结晶相红磷光电极(CP/W)的产氢能力,以红磷光电极为阳极,铂片对电极为阴极。通过将反应器和带有热导检测器的气相色谱(岛津GC-2014)连接,可以检查在铂片阴极上产生氢气的量。
经检测,实施例1制得的钨网基底的结晶相红磷光电极(CP/W)作为阳极时,在铂片阴极上产生氢气的量达到每小时1.89mL。
上面对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。