一种修饰改性的钛酸铅基高温压电陶瓷及其制备方法

文档序号:2275 发布日期:2021-09-17 浏览:42次 英文

一种修饰改性的钛酸铅基高温压电陶瓷及其制备方法

技术领域

本发明属于压电陶瓷领域,具体涉及一种修饰改性的钛酸铅基高温压电陶瓷及其制备方法。

背景技术

压电陶瓷能够将电能和机械能相互耦合,是众多元器件中的关键功能材料之一,广泛应用于电子通讯、医疗设备、航空航天等领域。压电材料分为压电单晶、压电陶瓷、压电高分子以及压电复合材料,其中压电陶瓷因低廉的成本、优异的压电性能、丰富的组分可调性及简单的制备工艺,占据大部分的市场份额,拥有非常广阔的前景。

随着工业和科学技术的发展,在石油勘探、航空航天、汽车等领域都需要高温恶劣环境中工作的高精度驱动器、探测换能器等压电器件,故而使用温度在300℃以下的锆钛酸铅陶瓷已经不能满足高温使用要求。居里温度高于锆钛酸铅约100℃的BiScO3-PbTiO3(BS-PT)高温压电陶瓷成为最具有竞争力、使用温度在200-400℃的压电材料。

本领域主要通过制备工艺、单元素掺杂、固溶新元等手段来降低材料成本和调控BS-PT高温压电陶瓷的性能。利用两步烧结法制备的纳米级BS-PT陶瓷,压电系数提高到520pC/N(J.Am.Ceram.Soc.2008;91:121-126.),但是工艺的重复性差,成本较高;利用Nb(JAm Ceram Soc,2007;90:477-482.)、Fe(Appl Phys Lett,2005;87:242901.)、Co(ApplPhys Lett2008;92:142905.)等取代Sc,居里温度保持为400℃以上,压电系数却降至180~300pC/N;在BiScO3-PbTiO3中固溶Pb(In1/3Nb2/3)O3(Acta Mater 2019;181:238-248)、Bi(Mn1/2Zr1/2)O3(JEur Ceram Soc,2020;40:3003-3010.)、PbZrO3(Ceram Int.2018;44:6817-6822.)的压电系数大于300pC/N,居里温度降至130~317℃;中国专利CN103936412A公开的BiScO3-xPbTiO3-0.05Pb(Sn1/3Nb2/3)O3压电陶瓷,同时具有较高的居里温度(400~420℃)和压电系数(370~560pC/N),但剩余极化强度为30~42μC/cm2(Adv.Funct.Mater.2019;29:1807920)。

一般认为,压电系数受到本征因素(晶体结构变化)和非本征因素(铁电畴运动,畴壁移动等)的影响,剩余极化强度主要受到晶格畸变产生的相变及氧空位引起的空间电荷变化等的影响,而居里温度受到容忍因子、相结构、位错等的影响。这些影响因素之间的相互制衡及相互作用导致了在相同组分的陶瓷中三者难以同时达到最大值。然而,压电陶瓷在实际服役过程中会受到温度、电场、力场等多场耦合的综合作用,只仅单一方面的性能优势是远远不够的。因此,寻求综合性能优异的高温压电陶瓷是亟待解决的问题。

发明内容

针对现有压电陶瓷的居里温度和综合电学性能无法同时满足特定指标的情况,本发明提供一种具有高压电系数、高居里温度、高剩余极化强度、高退极化温度的修饰改性的钛酸铅基高温压电陶瓷及其制备方法。

第一方面,本发明提供一种修饰改性的钛酸铅基高温压电陶瓷。所述修饰改性的钛酸铅基高温压电陶瓷的化学组成为0.365BiScO3-0.635BixPb1-3x/2Ti0.99Zn0.01O3(BS-BPZT),x表示Bi的摩尔百分比,0≤x≤0.03。所述钛酸铅基高温压电陶瓷以偏三方相且处在准同型相界(MPB)附近的BS-PT陶瓷为基体,采用A、B位共掺的策略增强性能可调性:具有铁电活性且能增强陶瓷四方相的Zn取代钙钛矿结构中的氧八面体中的B位的钛,高价且提高三方相的Bi取代钛酸铅中的A位Pb,从而获得三方和四方共存的准同型相界,提高压电、铁电和介电性能。另外,还采用调控Bi含量来调控微结构,在有效提高钛酸铅基钙钛矿结构压电陶瓷压电性的同时,协同优化其铁电性,为铅基钙钛矿结构压电陶瓷在高温压电传感器中的应用提供了新思路。

其中,将x控制在0.03以下,通过仅调整Bi的取代量即可实现可控调整陶瓷的结构和性能,以满足高温压电传感器对陶瓷材料的要求(高压电系数、高居里温度和较优的铁电性)。若x的取值大于0.03,则陶瓷的相结构完全偏离了MPB,使得材料的性能(例如压电系数)大幅度下降,这与本发明提高陶瓷性能的目的背道而驰。

相较于三元固溶体体系,本发明利用二元组成设计能够更加准确地控制原子的替换和取代,仅通过双离子取代来构筑准同型相界,就能获得具有高居里温度、高压电系数、高剩余极化强度及高退极化温度的高温压电陶瓷。

较佳地,所述修饰改性的钛酸铅基高温压电陶瓷的室温压电系数为300~550pC/N,居里温度为300~500℃,应变为0.2~0.4%,剩余极化强度为40~50μC/cm2,退极化温度350-450℃。

第二方面,本发明提供上述任一项所述的修饰改性的钛酸铅基高温压电陶瓷的制备方法。所述制备方法包括:根据修饰改性的钛酸铅基高温压电陶瓷的化学组成,以Bi2O3、Sc2O3、PbO、TiO2和ZnO为原料,按照相应的化学计量比称量上述原料后混料,在600~900℃保温合成2~4小时,获得陶瓷粉体;以及将所述陶瓷粉体在1100~1200℃保温烧结1~3小时得到所述修饰改性的钛酸铅基高温压电陶瓷。该制备方法采用固相反应制备出A、B位共掺杂的钛酸铅基钙钛矿结构压电陶瓷。

较佳地,所述陶瓷粉体的粒径为1~2μm。

较佳地,所述混料方式为湿法球磨混合,其中,原料:球磨介质:水的质量比=1:(1.2~1.8):(0.5~0.9),混合时间为2~6小时。一些技术方案中,所述球磨介质为玛瑙球。

较佳地,所述制备方法还包括:在烧结之前向陶瓷粉体中加入粘结剂造粒,压制成型并排塑得到陶瓷坯体,随后对所述陶瓷坯体进行烧结;优选地,粘结剂的加入量为陶瓷粉体的4~8wt.%;更优选地,所述粘结剂为聚乙烯醇。

较佳地,所述排塑条件为以不高于2℃/min的升温速率升温至600~800℃并保温3小时以下。

较佳地,所述制备方法还包括:对所述修饰改性的钛酸铅基高温压电陶瓷进行印银、烘干和烧银处理,然后施加电极进行极化。

较佳地,所述烧银条件为于700~800℃保温60分钟以下;所述极化条件为在4~6kV/mm于100~140℃极化15~30分钟。

较佳地,所述陶瓷粉体在加入粘结剂造粒前,采用湿法球磨进行细磨后烘干,其中,陶瓷粉体:球磨介质:水的质量比=1:(1.2~1.8):(0.5~0.9),细磨时间为4~8小时。

附图说明

图1中的(A)、(B)、(C)、(D)分别为压电陶瓷0.365BiScO3-0.635BixPb1-3x/ 2Ti0.99Zn0.01O3(x=0,0.01,0.02,0.03)的扫描电镜图;

图2中的(A)为压电陶瓷0.365BiScO3-0.635BixPb1-3x/2Ti0.99Zn0.01O3(x=0,0.01,0.02,0.03)的X射线衍射图,(B)为(A)的局部放大图;

图3为压电陶瓷0.365BiScO3-0.635BixPb1-3x/2Ti0.99Zn0.01O3(x=0,0.01,0.02,0.03)的压电系数曲线;

图4为压电陶瓷0.365BiScO3-0.635BixPb1-3x/2Ti0.99Zn0.01O3(x=0,0.01,0.02,0.03)的压电系数随退火温度升高的变化曲线。

具体实施方式

通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。以下各百分含量如无特别说明均指质量百分含量。

现有压电陶瓷材料居里温度和综合电学性能无法同时满足高温压电传感器的要求,对此,本发明提出创新的组成设计,通过A、B位共掺来调控准同型相界,在保证高居里温度的同时,有效提高铅基钙钛矿结构压电陶瓷的压电性,并协同优化铁电性及退极化行为,为铅基钙钛矿结构压电陶瓷在高温压电传感器中的应用提供新思路。具体地,本公开一种修饰改性的钛酸铅基高温压电陶瓷(也称为“铅基钙钛矿高温压电陶瓷”)的组成为0.365BiScO3-0.635BixPb1-3x/2Ti0.99Zn0.01O3,其中,0≤x≤0.03。一些技术方案中,0<x≤0.03。进一步优选为0.01≤x≤0.03。

上述铅基钙钛矿高温压电陶瓷中,选择偏三方相且处在MPB附近的BS-PT组分为基体,同时采用A、B位共掺的策略增强性能可调性,用高铁电活性且增强陶瓷四方相的Zn取代钙钛矿结构中的氧八面体中的B位的钛,高价且提高三方相的Bi取代钛酸铅中的A位Pb,从而获得三方和四方共存的准同型相界,提高压电、铁电和介电性能。

与BS-PT相比,本发明引入Zn2+,其铁电活性优于Sc和Ti,能产生更大的B位离子的位移。Zn2+的4s和4p轨道与O的2p轨道的杂化对A位离子和B位离子位移起着促进作用,另外,B位Zn离子的3s,3p,3d轨道都处在全满状态,其与O的排斥力也增大了Zn与O的位移,稳定了强四方相的存在。这些复杂且强烈的杂化效应导致了陶瓷具有很强的四方相畸变。又,Bi3+取代Pb2+属于施主掺杂,产生了Pb2+空位,促进了畴壁的运动,陶瓷样品容易单畴化。Bi3+存在6s2孤对电子,孤对电子的存在会使钙钛矿发生一定程度的畸变,Bi3+的6s轨道和O的2p轨道的杂化作用增加A-O键的键能,既能维持较高的居里温度,也提高了铁电特性。此外,还采用具有三方相特性的Bi来抑制四方相的畸变,从而获得三方和四方共存的准同型相界。在此说明的是,区别于将Zn和Nb先合成的前驱体,后与其他氧化物固溶形成新的三元固溶体,本发明调控准同型相界的方式简单易行,仅额外引入Zn元素并作为二元固溶体组分,主要目的是取代B位,增强A与O的杂化程度,提高陶瓷的退极化温度和铁电性能。

本发明采用上述组成并调控准同型相界,进而提高高温压电陶瓷的压电系数并且保证了较高的居里温度(300~500℃),满足了高温压电陶瓷元器件对高温压电陶瓷材料的要求,为高温压电陶瓷材料在高温领域的应用起到了强有力的推进作用,有望用于使用温度200~400℃的高温压电器件。一些示例中,所述高温压电陶瓷的压电系数为380~530pC/N(优选为490~530pC/N),居里温度为300~500℃,应变为0.2~0.4%,剩余极化强度为40~50μC/cm2,退极化温度350-450℃。这和未掺杂的BiScO3-PbTiO3(TC=430℃,d33=350pC/N,Pr=39μC/cm2)相比,材料的综合性能明显改善。在组成调试过程中,本发明尝试通过固溶第三元构筑相界进行陶瓷改性,所得体系为BiScO3-PbTiO3-Bi(Sn1/3Nb2/3)O3,但是其压电系数(380~460pC/N),居里温度(340~440℃)和退极化温度(200~270℃),该性能均低于本发明。

本发明还公开上述铅基钙钛矿高温压电陶瓷的制备工艺,具体包括配料、混料、合成、细磨、成型、排塑、烧结等。

一些示例中,所述钙钛矿结构高温压电陶瓷材料的制备方法,可包括如下步骤:

步骤(a),按照化学计量比称量Bi2O3、PbO、Sc2O3、ZnO和TiO2粉体,经湿式行星球磨、合成得到0.365BiScO3-0.635BixPb1-3x/2Ti0.99Zn0.01O3陶瓷粉体。

该湿式行星球磨中,按照原料:球磨介质:水=1:(1.2~1.8):(0.5~0.9)的质量比,混料2~6小时。球磨介质可为玛瑙球。又,所述的合成条件为在600~900℃保温合成2~4小时。优选地,以不高于2℃/min的升温速率升温至700~900℃,保温1~3小时,随炉冷却至室温后取出,得到合成物。一些示例中,所述合成物(即陶瓷粉体)的粒径为1~2μm。

在合成后可对合成物进行二次行星球磨、烘干。按照合成物:球磨介质:水=1:(1.2~1.8):(0.5~0.9)的质量比进行细磨4~8小时。球磨介质可为玛瑙球。二次行星球磨后于100~150℃烘干。

步骤(b),向陶瓷粉体加入粘结剂造粒,陈化后压制成型,然后升温排塑,得到陶瓷坯体。一些示例中,所述的粘结剂可为聚乙烯醇(PVA)。粘结剂的加入量可为陶瓷粉料的4~8wt.%。另外,所述排塑条件可为:以不高于2℃/min的升温速率升温至600~800℃,保温3小时以下。

步骤(c),将陶瓷坯体放入(小型)高温炉中,为了减少高温下氧化铅和氧化铋的挥发,用步骤(a)所得陶瓷粉体相应组分的粉体以覆盖陶瓷坯体,然后按照一定的条件烧结后得到所述的陶瓷片。所述的烧结条件可为以不高于2℃/min的升温速率升温至1000~1200℃,保温1~3小时,随炉冷却至室温。

步骤(d),将烧结好的陶瓷片加工成所需尺寸,超声清洁,丝网印银,烘干,烧银,然后施行电极进行极化,得到所述高温压电陶瓷材料。所述烧银条件可为700~800℃保温60分钟以下。另外,所述极化条件可为100~140℃,4~6kV/mm,极化15~30分钟。

下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。

实施例1-4

1.采用固相烧结法制备(0.365BiScO3-0.635BixPb1-3x/2Ti0.99Zn0.01O3高温压电陶瓷。其中,x(Bi的摩尔比为)为0~0.03。以Bi2O3、PbO、TiO2、ZnO和Sc2O3粉体为原料,按照化学计量比称量,采用湿式球磨法混料,以原料:研磨介质:水=1:1.5:0.7的质量比混合4小时,使其混合均匀。将混合后的原料于120℃烘干之后,过40目筛,在3MPa压力下成型,以2℃/min的升温速率升温至850℃并保温2小时,合成所需的陶瓷粉体。

2.将步骤1合成的陶瓷粉体研磨,过40目筛之后,采用湿式球磨法进行细磨,陶瓷粉体:研磨介质:水=1:1.5:0.6的质量比混合6小时,使其混合均匀,得到粒径在1~3μm之间的粉体。将所得粉料烘干,加入6wt.%的PVA粘结剂,进行造粒,5MPa压力下成型,陈化24小时,过40目筛,在1.3MPa压力下压制成直径为13mm的圆片,再在低温炉中升温至750℃并保温60分钟,进行排塑得到素坯体。

3.将陶瓷坯体填埋在装有相同组成陶瓷粉体的密闭氧化铝坩埚中,放到高温炉中,以2℃/min的升温速率升温至目标温度1080~1180℃并保温2小时,随炉冷却至室温之后取出,得到所需陶瓷片。

4.将获得的陶瓷片加工至厚度为0.5mm,超声清洗,烘干,丝网双面刷银,以2℃/min的升温速率升至750℃并保温10分钟,烧银,然后施行电极进行极化,极化条件为在120℃于4~6kV/mm极化20分钟,即得所述钙钛矿结构的高温压电陶瓷。

实施例1-4中,x分别为0、0.01、0.02、0.03。

对极化过的陶瓷进行测试:居里温度Tc按照GB/T 3389.3进行测试;利用日本的Rigaku公司的RAX-10型X射线衍射仪分析压电陶瓷的相结构;采用中科院声学所生产的ZJ-3A型准静态d33测试仪测量压电陶瓷在室温的d33,测试频率为100Hz,每个试样测10个,取平均值;使用德国aixACCT公司生产的铁电分析仪TF Analyzer 2000测试压电陶瓷的电滞回线。本发明高温压电陶瓷的各项性能测试结果见表1。

表1压电陶瓷材料的性能测试表

从表1可以看出,d33,Pr的值随着x的增大先增大再减小,居里温度随着x的增大逐渐减低,在实施例3(x=0.02)时,即MPB附近取得最优值;Tc的值随着固溶量的增加呈现线性降低,在x=0.02时仍保持着较高的值(Tc=407℃)。

图1为本发明高温压电陶瓷(x=0,0.01,0.02,0.03)的断面形貌图。从图1看出,陶瓷断面的气孔较少,在各组分的晶界处可以看到明显的液相烧结痕迹,提高了致密度。随着x的增加,陶瓷的平均晶粒尺寸逐渐从11.5μm降低至2.3μm。陶瓷断面逐渐从以沿晶断裂为主变成了以穿晶断裂为主,这主要是由晶界处的结合力逐渐增强导致。

图2为本发明高温压电陶瓷(x=0,0.01,0.02,0.03)的X射线图谱。从图2中看出,上述压电陶瓷表现为单一的钙钛矿结构,没有明显的第二相出现。另外x=0时,陶瓷表现为典型的四方相,说明Zn的引入增加了B位离子与O离子的距离,导致了四方相的增加。随着x值的不断增大,45°附近的(002)和(200)峰逐渐合二为一。这说明Bi离子的取代导致晶格结构失配现象严重,出现了明显的钙钛矿结构从四方相变化到三方相的变化,从而使其在某一固溶量(x=0.02)附近表现为三方相和四方相共存,即为准同型相界(MPB)。

图3为本发明高温压电陶瓷(x=0,0.01,0.02,0.03)的室温下的压电系数。随着固溶量的增加,压电系数先增大再减小,在MPB附近的压电系数可达495pC/N,对提高传感器的灵敏度具有非常重要的意义。

图4为本发明高温压电陶瓷(x=0,0.01,0.02,0.03)的压电系数随退火温度升高的变化曲线。从图中可以看出,所有组分的陶瓷退极化温度在350-450℃之间。这对高温压电陶瓷的高温应用有着极大的推动作用。

完整详细技术资料下载
上一篇:石墨接头机器人自动装卡簧、装栓机
下一篇:压电组合物及电子部件

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!