一种多相纳米晶陶瓷复合材料的制备方法
技术领域
本发明涉及烧绿石陶瓷材料领域,具体涉及一种多相纳米晶陶瓷复合材料的制备方法。
背景技术
材料中的界面具有为辐照缺陷提供湮没空间的特性,因此引入晶界可以从根本上提高材料的抗辐照性能。目前国际上关于抗辐照材料的设计与开发的研究主要分为三类,分别是引入高密度自由表面的纳米多孔结构材料、引入高密度异质界面的纳米多层膜材料和引入高密度晶界的纳米晶材料。一般而言,纳米多孔结构材料消除辐照缺陷的能力与其骨架尺寸和辐照条件密切相关,且大多采用脱合金工艺制备,可获得的材料种类受限。同样的,制备纳米多层膜主要采用的磁控溅射法需要在高真空、高温条件下进行,设备昂贵,工艺复杂。相比之下,制备纳米晶材料的工艺更为简单,易于工业化生产。且研究发现,与传统的大晶粒陶瓷材料相比,纳米晶陶瓷由于其更大的表面积与体积比,有望表现出更好的光学、磁性、机械和电气特性。然而,纳米晶陶瓷材料在辐照或高温条件下会发生晶粒粗化,这会影响其电学、硬度、抗辐照和热稳定性等性能。因此,研究制备在高温下晶粒生长缓慢的纳米晶陶瓷材料已成为需要迫切解决的问题。
发明内容
针对现有技术中的上述不足,本发明提供了一种多相纳米晶陶瓷复合材料的制备方法,通过加入掺杂剂来抑制晶粒生长且烧结过程中不产生第二相。其制备方法简单,方便推广。
一种多相纳米晶陶瓷复合材料的制备方法,包括以下步骤:
S1、称取原料:
Y2O3+2C16H36O4Ti+7.5C6H8O7→Y2Ti2O7
根据反应方程式按一定的摩尔比称取适量的氧化钇Y2O3、钛酸四丁酯C16H36O4Ti和无水柠檬酸C6H8O7来制备纳米Y2Ti2O7粉末;
S2、将称取的氧化钇分散在去离子水中,放在恒温磁力搅拌器上搅拌,调节温度至80℃,搅拌的同时逐滴加入少量浓硝酸帮助溶解,搅拌至透明后将温度调节至100℃来挥发过量的硝酸,得到溶液A;
S3、将作为螯合剂的无水柠檬酸彻底溶解在无水乙醇中直至溶液透明,再把相应化学计量的钛酸四丁酯逐滴加入到溶液中,大力搅拌混合溶液直到得到透明的溶液B;
S4、将溶液A缓慢加入到溶液B里,过程中不断搅拌,混合溶液会产生白色絮状物,滴加少量氨水调节溶液pH值为6.7;将混合溶液放在80℃的水浴锅中水浴,使多余的溶质和水挥发,溶液逐渐变得粘稠,最终变成乳白色凝胶;
S5、把凝胶放入干燥箱,在120℃下干燥24-48h直至得到黄绿色干凝胶;
S6、对干凝胶进行煅烧,设置马弗炉升温速率为5℃/min,在1000℃下保温1.0h,降温速率设为3℃/min,最终得到Y2Ti2O7白色纳米粉末,在研钵中初步研磨并进行XRD、TEM表征;
S7、将Y2Ti2O7和ZrO2、Al2O3纳米粉末按等摩尔比混合,在球磨机上球磨4次,每次30min,将粉末充分混合;
S8、将步骤S7中球磨好的粉末称取10g装入直径为30mm的石墨模具中,再放入SPS中加热,在1300℃下保温5min,单轴压力设为40Mpa,升温速率设为100℃/min,降温速率也设为100℃/min,气氛为真空;
S9、在1000℃下退火2h以去除残余碳并松弛烧结过程中的应力,制得多相纳米晶陶瓷材料。
作为优选的,使用的氧化钇质量百分比纯度为99.99%;钛酸四丁酯质量百分比纯度为99%;无水柠檬酸质量百分比纯度为99.50%;无水乙醇质量百分比纯度为99.70%;ZrO2粉末平均颗粒尺寸为50nm、质量百分比纯度为99.99%;Al2O3粉末平均颗粒尺寸为20nm、质量百分比纯度为99.99%。
作为优选的,将步骤9中制得的产物进行XRD、SEM表征。
作为优选的,本发明制得的多相纳米晶陶瓷材料,平均颗粒尺寸达到99.0554nm;在经过高温晶粒生长实验后,其晶粒生长率为1.7-1.8。
本发明的有益效果为:
(1)使用工艺简单的方法合成了粒径在30nm以内的Y2Ti2O7粉末;
(2)提供了一种多相纳米晶陶瓷复合材料的制备方法,使用该方法可得到较为理想的高温下晶粒生长缓慢的纳米晶陶瓷材料。该方法制备过程较简单,且有效抑制了晶粒生长。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应该被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为一种多相纳米晶陶瓷复合材料的制备工艺流程图;
图2为Y2Ti2O7纳米粉末的XRD表征图;
图3为Y2Ti2O7纳米粉末的TEM表征图;
图4为多相纳米晶陶瓷复合材料样品的XRD表征图;
图5为多相纳米晶陶瓷复合材料样品的SEM表征图;
具体实施方式
为了使本发明的目的、技术方案和优点更容易被清楚地理解,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
实施例1:
一种多相纳米晶陶瓷复合材料的制备方法,包括以下步骤:
首选制备Y2Ti2O7纳米粉末,以氧化钇(Y2O3,99.99%)、钛酸四丁酯(C16H36O4Ti,99%)为原料,无水柠檬酸(C6H8O7,99.50%)做螯合剂,无水乙醇(C2H6O,99.70%)为溶剂制备Y2Ti2O7纳米粉末;然后由Y2Ti2O7、ZrO2(99.99%,50nm)、Al2O3(99.99%,20nm)粉末混合合成多相纳米晶陶瓷复合材料;具体如下:
S1、称取原料:
Y2O3+2C16H36O4Ti+7.5C6H8O7→Y2Ti2O7
根据反应方程式按一定的摩尔比称取适量的氧化钇Y2O3、钛酸四丁酯C16H36O4Ti和无水柠檬酸C6H8O7;
S2、将称取的氧化钇分散在去离子水中,放在恒温磁力搅拌器上搅拌,调节温度至80℃,搅拌的同时逐滴加入少量浓硝酸帮助溶解,搅拌至透明后将温度调节至100℃来挥发过量的硝酸,得到溶液A;
S3、将柠檬酸彻底溶解在无水乙醇中直至溶液透明,再把相应化学计量的钛酸四丁酯逐滴加入到溶液中,大力搅拌混合溶液直到得到透明的溶液B;
S4、将溶液A缓慢加入到溶液B里,过程中不断搅拌,混合溶液会产生白色絮状物,滴加少量氨水调节溶液pH值为6.7;将混合溶液放在80℃的水浴锅中水浴,使多余的溶质和水挥发,溶液逐渐变得粘稠,最终变成乳白色凝胶;
S5、把凝胶放入干燥箱,在120℃下干燥24-48h直至得到黄绿色干凝胶;
S6、对干凝胶进行煅烧,设置马弗炉升温速率为5℃/min,在1000℃下保温1.0h,降温速率设为3℃/min,最终得到Y2Ti2O7白色纳米粉末,研磨后进行XRD、TEM表征;
S7、将Y2Ti2O7和ZrO2、Al2O3纳米粉末按等摩尔比混合,在球磨机上球磨4次,每次30min,将粉末充分混合;
S8、将步骤S7中球磨好的粉末称取10g装入直径为30mm的石墨模具中,再放入SPS中加热,在1300℃下保温5min,单轴压力设为40Mpa,升温速率设为100℃/min,降温速率也设为100℃/min,气氛为真空;
S9、由于在烧结过程中使用了石墨模具,烧结后的样品需要抛光去除表面的石墨,之后在1000℃下退火2h以去除残余碳并松弛烧结过程中的应力,制得多相纳米晶陶瓷复合材料;将合成的产物进行XRD、SEM表征。
对本发明方法制得的多相纳米晶陶瓷材料进行XRD分析和SEM观察,试验结果如图4,5所示。烧结过程中并未生成第二相,且平均颗粒尺寸达到99.0554nm;在经过高温晶粒生长实验后,其晶粒生长率为1.7-1.8。表明利用本方法可得到较为理想的高温下晶粒生长缓慢的多相纳米晶陶瓷材料。
实施例2:
按照上述步骤进行Lu2Ti2O7,Al2O3和ZrO2多相纳米晶样品的制备,包括以下步骤:
S1、称取原料:
Lu2O3+2C16H36O4Ti+7.5C6H8O7→Lu2Ti2O7
根据反应方程式按一定的摩尔比称取适量的氧化镥Lu2O3、钛酸四丁酯C16H36O4Ti和无水柠檬酸C6H8O7;
S2、将称取的氧化镥分散在去离子水中,放在恒温磁力搅拌器上搅拌,调节温度至80℃,搅拌的同时逐滴加入少量浓硝酸帮助溶解,搅拌至透明后将温度调节至100℃来挥发过量的硝酸,得到溶液A;
S3、将柠檬酸彻底溶解在无水乙醇中直至溶液透明,再把相应化学计量的钛酸四丁酯逐滴加入到溶液中,大力搅拌混合溶液直到得到透明的溶液B;
S4、将溶液A缓慢加入到溶液B里,过程中不断搅拌直至溶液透明,将混合溶液放在80℃的水浴锅中水浴,使多余的溶质和水挥发,溶液逐渐变得粘稠,最终变成乳白色凝胶;
S5、把凝胶放入干燥箱,在120℃下干燥24-48h直至得到黄绿色干凝胶;
S6、对干凝胶进行煅烧,设置马弗炉升温速率为5℃/min,在1000℃下保温1.0h,降温速率设为3℃/min,最终得到Lu2Ti2O7白色纳米粉末;
S7、将Lu2Ti2O7、Al2O3和ZrO2纳米粉末按等摩尔比混合,在球磨机上球磨4次,每次30min,将粉末充分混合;
S8、将步骤S7中球磨好的粉末称取10g装入直径为30mm的石墨模具中,再放入SPS中加热,在1300℃下保温5min,单轴压力设为40Mpa,升温速率设为100℃/min,降温速率也设为100℃/min,气氛为真空;
S9、在1000℃下退火2h以去除残余碳并松弛烧结过程中的应力。
其中,使用的氧化镥质量百分比纯度为99.99%;钛酸四丁酯质量百分比纯度为99%;无水柠檬酸质量百分比纯度为99.50%;无水乙醇质量百分比纯度为99.70%;氧化锆粉末平均颗粒尺寸为50nm、质量百分比纯度为99.99%;氧化铝粉末平均颗粒尺寸为20nm、质量百分比纯度为99.99%。
实施例3:
按照上述步骤进行Y2Ti2O7和ZrO2两相纳米晶样品的制备,包括以下步骤:
S1、称取原料:
Y2O3+2C16H36O4Ti+7.5C6H8O7→Y2Ti2O7
根据反应方程式按一定的摩尔比称取适量的氧化钇Y2O3、钛酸四丁酯C16H36O4Ti和无水柠檬酸C6H8O7;
S2、将称取的氧化钇分散在去离子水中,放在恒温磁力搅拌器上搅拌,调节温度至80℃,搅拌的同时逐滴加入少量浓硝酸帮助溶解,搅拌至透明后将温度调节至100℃来挥发过量的硝酸,得到溶液A;
S3、将柠檬酸彻底溶解在无水乙醇中直至溶液透明,再把相应化学计量的钛酸四丁酯逐滴加入到溶液中,大力搅拌混合溶液直到得到透明的溶液B;
S4、将溶液A缓慢加入到溶液B里,过程中不断搅拌,混合溶液会产生白色絮状物,滴加少量氨水调节溶液pH值为6.7;将混合溶液放在80℃的水浴锅中水浴,使多余的溶质和水挥发,溶液逐渐变得粘稠,最终变成乳白色凝胶;
S5、把凝胶放入干燥箱,在120℃下干燥24-48h直至得到黄绿色干凝胶;
S6、对干凝胶进行煅烧,设置马弗炉升温速率为5℃/min,在1000℃下保温1.0h,降温速率设为3℃/min,最终得到Y2Ti2O7白色纳米粉末,研磨后进行XRD、TEM表征;
S7、将Y2Ti2O7和ZrO2纳米粉末按等摩尔比混合,在球磨机上球磨4次,每次30min,将粉末充分混合;
S8、将步骤S7中球磨好的粉末称取10g装入直径为30mm的石墨模具中,再放入SPS中加热,在1300℃下保温5min,单轴压力设为40Mpa,升温速率设为100℃/min,降温速率也设为100℃/min,气氛为真空;
S9、在1000℃下退火2h以去除残余碳并松弛烧结过程中的应力。
对比例:
按照上述步骤进行Y2Ti2O7单相纳米晶样品的制备,包括以下步骤:
S1、称取原料:
Y2O3+2C16H36O4Ti+7.5C6H8O7→Y2Ti2O7
根据反应方程式按一定的摩尔比称取适量的氧化钇Y2O3、钛酸四丁酯C16H36O4Ti和无水柠檬酸C6H8O7;
S2、将称取的氧化钇分散在去离子水中,放在恒温磁力搅拌器上搅拌,调节温度至80℃,搅拌的同时逐滴加入少量浓硝酸帮助溶解,搅拌至透明后将温度调节至100℃来挥发过量的硝酸,得到溶液A;
S3、将柠檬酸彻底溶解在无水乙醇中直至溶液透明,再把相应化学计量的钛酸四丁酯逐滴加入到溶液中,大力搅拌混合溶液直到得到透明的溶液B;
S4、将溶液A缓慢加入到溶液B里,过程中不断搅拌,混合溶液会产生白色絮状物,滴加少量氨水调节溶液pH值为6.7;将混合溶液放在80℃的水浴锅中水浴,使多余的溶质和水挥发,溶液逐渐变得粘稠,最终变成乳白色凝胶;
S5、把凝胶放入干燥箱,在120℃下干燥24-48h直至得到黄绿色干凝胶;
S6、对干凝胶进行煅烧,设置马弗炉升温速率为5℃/min,在1000℃下保温1.0h,降温速率设为3℃/min,最终得到Y2Ti2O7白色纳米粉末,研磨后进行XRD、TEM表征;
S7、将Y2Ti2O7纳米粉末在球磨机上球磨4次,每次30min;
S8、将步骤S7中球磨好的粉末称取10g装入直径为30mm的石墨模具中,再放入SPS中加热,在1300℃下保温5min,单轴压力设为40Mpa,升温速率设为100℃/min,降温速率也设为100℃/min,气氛为真空;
S9、在1000℃下退火2h以去除残余碳并松弛烧结过程中的应力。
实验数据
对本发明实施例1、2中的多相纳米晶陶瓷复合材料、实施例3中的两相纳米晶样品和对比例中的单相纳米晶样品进行高温晶粒生长实验。实验条件:1350℃,30min。晶粒生长前后进行SEM表征,统计平均粒径得到晶粒生长率如表所示。
由上表可知,多相纳米晶陶瓷复合材料的晶粒生长率分别为1.794,1.899,两相纳米陶瓷复合材料的晶粒生长率是3.423,而Y2Ti2O7单相纳米晶陶瓷的生长率达到9.198,多相纳米晶陶瓷复合材料的抗晶粒粗化能力大大增强。
如附图所示,将本发明实施例1中合成的Y2Ti2O7纳米粉末进行XRD、TEM表征,结果如附图2、附图3所示。表明样品合成成功且颗粒大小在100nm以内,可因此利用谢乐公式计算得到具体的晶粒尺寸为22.754nm。
将本发明实施例1中制得的多相纳米晶陶瓷复合材料进行XRD表征,结果见附图4,可看到样品中只有Y2Ti2O7、ZrO2和Al2O3三种相,并无第二相生成;将多相纳米晶陶瓷复合材料进行SEM表征,结果如附图5所示,从中统计得到平均颗粒尺寸为99.0554nm。
本发明用较简单的制备方法合成了粒径在30nm以内的Y2Ti2O7粉末,同时提供的一种多相纳米晶陶瓷材料的制备方法,该方法制备过程简单,降低了工艺复杂性;使用该方法可得到较为理想的高温下晶粒生长缓慢的纳米晶陶瓷材料,烧结过程中并未生成第二相,且平均颗粒尺寸小于100nm。
以上所述仅为本发明专利的较佳实施例而已,并不用以限制本发明专利,凡在本发明专利的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明专利的保护范围之内。