一种可预测脓毒症急性肾损伤的模型

文档序号:9947 发布日期:2021-09-17 浏览:42次 英文

一种可预测脓毒症急性肾损伤的模型

技术领域

本发明涉及生物

技术领域

,具体地说,是一种可预测脓毒症急性肾损伤的模型。

背景技术

脓毒症和脓毒症相关性AKI涉及宿主免疫系统与微生物之间的相互作用引起的炎症反应失调。尽管最近在临床研究方面取得了一定进展,但脓毒症和脓毒症相关性AKI仍然与高发病率和高死亡率有关。前面已经提出了ATIII在预测脓毒症相关性AKI的价值,同时我们前期研究发现男性、低ATIII水平是老年脓毒症相关性AKI的独立危险因素,是否可以联合这些因素同时对脓毒症相关性AKI进行预测,仍值得进一步研究探讨。

据报道,性激素对免疫反应具有调节作用。雌二醇可以诱导促炎性细胞因子的产生和巨噬细胞的活化,睾丸激素对免疫反应具有抑制作用,并增加了对感染的易感性。此外,流行病学研究表明,男性比女性更容易患脓毒症,这表明性别特异性激素水平可能会影响对重症的易感性。据报道,创伤或严重感染后的性别差异。有限的临床研究还证明了血清性激素水平与脓毒症休克的发生和治疗结果之间的潜在联系。目前还缺乏有关性激素与脓毒症相关的多器官功能障碍之间关系的信息。

目前有大量研究集中于脓毒症相关的AKI预测生物标志物。但单一的生物标志物对预测疾病和预后存在一定的不足,敏感性特异性参差不齐,最近,一些研究证明了建立诊断预测模型对AKI的有益作用。但脓毒症相关性AKI的预测模型鲜见报道。因此,联合血浆ATIII、性别、血清肌酐、尿素氮水平在脓毒症诱发AKI或其他器官功能障碍以及预后中的潜在作用值得进一步研究。

发明人前期也曾联合血浆等一些相关因素得到了预测模型(文献:Yun Xie 1,YiZhang1,Rui Tian 1,Wei Jin,Jiang Du,Zhigang Zhou*,Ruilan Wang*.A predictionmodel ofsepsis-associated acute kidney injurybased on antithrombin III.

Clin Exp Med..2021Feb;21(1):89-100IF2.644),但后期实验发现本发明得到的预测模型较之前结果有显著改善。因此,本研究的主要目的是建立基于血浆ATIII、性别、血清肌酐、年龄、高血压病史的脓毒症相关性AKI发生的一种准确率更高的预测模型。

关于本发明一种可预测脓毒症急性肾损伤的模型目前还未见报道。

发明内容

本发明的目的是针对现有技术的不足,提供一种可预测脓毒症急性肾损伤的模型。

为实现上述目的,本发明采取的技术方案是:

第一方面,本发明提供了一种预测模型在制备预测脓毒症急性肾损伤风险和预后的试剂或试剂盒中的应用,所述预测模型的评判方法为:

IN[P/(1-P)]=-0.163Gender-0.022ATIII+0.030Cr+0.681HBP-0.002age-4.895;

其中Gender表示性别,性别为男性,Gender=1,性别为女性,Gender=0,ATIII表示抗凝血酶III表达量,Cr表示血清肌酐表达量,HBP表示高血压病史,患者以往有高血压病史,HBP=1,患者以往没有高血压病史,HBP=0,age表示年龄;

当计算结果为0.5~1时,代表脓毒症急性肾损伤高风险,其余为低风险。

优选地,所述预测模型还包括如下试剂:正常人血清和阳性对照血清。

优选地,所述预后选自下列中任一种或几种:

a)预测脓毒症急性肾损伤个体的一定时间长度的生存率;

b)预测脓毒症急性肾损伤个体的生存时间;

c)预测脓毒症急性肾损伤个体出现好转后再发的可能性。

第二方面,本发明提供了一种预测脓毒症急性肾损伤风险的诊断试剂盒,所述诊断试剂盒包括检测ATIII表达量的试剂、检测血清肌酐表达量的试剂,所述试剂盒还包括说明书,所述说明书记载如下公式:

IN[P/(1-P)]=-0.163Gender-0.022ATIII+0.030Cr+0.681HBP-0.002age-4.895;

其中Gender表示性别,性别为男性,Gender=1,性别为女性,Gender=0,ATIII表示抗凝血酶III表达量,Cr表示血清肌酐表达量,HBP表示高血压病史,患者以往有高血压病史,HBP=1,患者以往没有高血压病史,HBP=0,age表示年龄;

当计算结果为0.5-1时,代表脓毒症急性肾损伤高风险,其余为低风险。

优选地,所述试剂盒内还包括如下试剂:正常人血清和阳性对照血清。

优选地,通过检测基因或蛋白的表达量用于预后分析。

优选地,检测ATIII和Cr表达量的检测方法选自RT-PCR、实时荧光定量PCR、基因芯片、高通量测序或免疫学检测。

本发明优点在于:

1、本发明首次创造性的提出一种基于性别、年龄、高血压病史、抗凝血酶III表达量、血清肌酐表达量的预测脓毒症急性肾损伤的模型,相较于以往单一的诊断指标或者联合指标其区分度和校准度均有很大的提升、诊断结果也更加客观,而且测定方法也更加简单、易行、可靠,为临床患者个体化给药提供依据。

2、本发明在前期研究的基础上另外选用其他的指标用来构建预测脓毒症急性肾损伤的模型,本发明较先前的预测模型检测结果更加客观、可靠、区分度和校准度均有显著提升,有很强的实用性。

附图说明

附图1是本发明的研究流程图。

附图2是实施例1中基于ATIII建立的脓毒症AKI预测模型ROC分析曲线图。

具体实施方式

下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明记载的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

实施例1

1病例选择

这是一项观察性研究。根据“Sepsis3.0”,我们招募了患有脓毒症的18岁或以上的成年患者。这项前瞻性研究包括来自一家三级甲等教学医院(上海第一人民医院)的数据。该前瞻性观察研究于2018年3月至2020年12月间进行。我们招募符合纳入标准的患者,跟踪住院信息,并通过电话进行28天随访调查。所有参加研究的患者签署知情同意。本研究经上海第一人民医院伦理审查委员会批准。

1.1纳入标准

(1)年龄≥18,≤85岁,男女不限;

(2)入住ICU的患者;

(3)确诊或临床诊断感染;

(4)序贯器官衰竭评分急性变化≥2分,即△SOFA评分≥2分(未知已有器官功能障碍的患者其基线SOFA评分为0)。

1.2排除标准:

(1)4或5期慢性肾脏疾病(CKD)患者(清除肌酐<30ml/min);

(2)肾移植患者;

(3)ICU患者住院时间<24h;

(4)患者入住ICU时已经患有AKI;

(5)肿瘤终末期疾病;

(6)拒绝一切抢救措施的患者;

(7)抗生素或其他药物过敏史;

(8)怀孕或哺乳患者;

(9)有明确肾毒性药物使用史。

1.3相关概念和定义

AKI定义为基于肾病改善全球预后(KDIGO)标准的血清肌酐增加或尿量减少。使用肾病饮食改良(MDRD)研究方程估算基线肾小球滤过率。基线肌酐定义为AKI发病前最后6个月的最低血清肌酐值,或者对于没有这种测量的患者,在没有透析的情况下住院期间达到的最低值。

1.4伦理学标准

本研究符合医学伦理标准,已通过上海第一人民医院的伦理委员会批准。我们将注重保护所有参与该研究患者的隐私,研究过程中去除患者姓名等个人信息,仅登记住院号信息,仅供项目数据核查时使用。

2临床观察指标

纳入观察患者的临床资料数据收集截止时间为纳入后第28天,临床数据信息来源于上海第一人民医院海泰电子病历系统,HIS住院医嘱系统以及原始的纸质病案。

2.1基本资料收集

基础资料(性别、年龄、民族、地址、电话等)。

病史资料(病因、初步诊断、既往病史、内科/外科患者、感染部位、病原体结果、合并症、吸烟史、饮酒史、家族史等)。

合并症主要收集:高血压、糖尿病、其他心血管疾病、免疫疾病、肝脏疾病、慢性阻塞性肺病。

2.2临床数据收集

(1)在第一个ICU日计算连续急性生理学和慢性健康评估(APACHE)II评分和序贯器官衰竭评估(SOFA)评分。

(2)收集第一个ICU日的实验室数据。在ICU住院期间每天收集生命体征,血液动力学和实验室数据。每天通过肌酐水平和尿量来评估肾功能。

(3)AKI根据AKI诊断后7天的KDIGO阶段进行分期。

2.3结局指标

主要结果:28天内诊断脓毒症相关性AKI。

次要结果:28天死亡率、CKD发生率、总住院时间、ICU住院时间、机械通气率、CRRT使用率、血管活性药物使用率。

2.4样本检测方法

入ICU后最初48小时内收集血样并检测抗凝血酶ATIII。将样品离心并在-80℃下储存并随后进行分析。通过发色底物显色法测定ATIII,检测试剂盒购于SiemensBerichrom ATIII,具体操作步骤如下:

(1)以标准物的浓度为横坐标(对数坐标),光密度(OD值)为纵坐标(普通坐标),得出标准曲线;

(2)将待测血浆用缓冲液40倍稀释,取100ul加入酶标板孔中;

(3)取凝血酶液50ul分别加入有标准血浆和待测血浆的孔中,振荡混匀,37℃湿盒中保湿约150-180分钟;

(4)取50ul发色底物,加入上述孔中,混匀,室温放置10分钟;

(5)在被检血浆中加入过量的凝血酶,后者与ATIII形成1:1复合物,剩余的凝血酶水解发色底物Tos-Gly-Pro-Arg-ANBA-IPA,释出发色基因ANBA-IPA,,显色深浅与剩余凝血酶呈正相关,与ATIII活性呈负相关;

(6)依序每孔加终止溶液50ul,终止反应(此时兰色立转黄色);

(7)根据样品的OD值由标准曲线查出相应的待测血浆ATIII活性。

3统计分析

研究数据使用SPSS 20.0进行统计学分析。符合正态分布的定量指标用均数±标准差表示,不符合的用中位数(四分位数)表示。分类指标的描述用各类的例数及百分数。对于具有正态分布的数据,使用独立样本t检验比较两组数据之间的差异。对于具有非正态分布的数据,使用非参数检验来比较差异。卡方检验或Fisher检验用于定性数据。使用Logistic回归分析来评估基于通过单变量分析选择的风险因子的结果。通过计算受试者工作特征曲线下面积(AUC-ROC)来评估ATIII在预测AKI和死亡中的诊断价值。通过比较AKI患者与非AKI患者以及通过比较幸存者患者与非幸存者患者来进行AUC-ROC分析。最佳截止值由AUC-ROC分析中显示的灵敏度和特异性计算的约登指数的最高值确定。P<0.05被认为具有统计学意义。所有统计检验均采用双侧检验。采用单因素和多因素条件Logistic回归模型筛选独立影响因素,并计算AKI发生风险的OR值及其95%可信区间。

通过多因素Logistic回归模型,形成基于多个预测指标的预测模型,计算新的联合预测因子。以是否发生急性肾损伤为结局,对比联合预测因子与各原始指标ROC曲线下面积(AUC),确定最佳临界值,计算敏感度、特异度及预测准确性等工作性能参数,最后通过个体值代入进行个体预测。采用Stata 12.0软件进行预测模型建立统计分析及统计制图,Stata 12.0命令语句、操作流程和结果输出。采用R version 3.6.2软件进行预测模型验证统计分析及统计制图。

4结果

4.1两组患者的人口统计学和基线特征资料比较

该研究时间于2018年3月开始,于2020年12月结束。在研究期间,共有333名患者被选中进行本研究。根据本研究的排除标准排除34名患者(10例已经诊断AKI,9例既往慢性肾病,7例肿瘤终末期,6例拒绝一切抢救措施,2例有抗生素或其他药物过敏史)。共纳入333例(90.7%)患者。其中78例诊断AKI,AKI患者中死亡33例,未诊断AKI患者中死亡47例(见流程图,图1)。

患者人口统计学和基线特征(基于AKI分组)见表1。216名患者(64.9%)为男性,117名(35.1%)患者为女性,所有333名患者均纳入最终数据分析(图1)。平均年龄为60.16±13.92岁,大多数患有合并症(65.8%,n=219)。高血压,糖尿病和其他心血管疾病是最常见的合并症。APACHE II评分为15.8±7.52,SOFA评分为6.36±3.64。78名患者(23.4%)患有AKI,急性肾脏替代治疗占31.2%,死亡率为24.0%。关于年龄,糖尿病,免疫疾病,肝病和COPD,非AKI(n=255)和AKI组(n=78)的特征相似。男性,高血压和心血管疾病在AKI中比例较高。AKI患者的死亡率较高(42.3%vs 18.4%,p<0.001)。表1显示了基于AKI分组的人群的临床和实验室特征。这两组需要机械通气和血管活性药物使用无统计学差异,APACHE II评分为(14.54±6.861vs19.90±8.125,p<0.0001),

SOFA评分(5.720±3.267vs8.460±4.022,p<0.001),这些指标在AKI患者中显著更高(表1)。

表1.患者人口统计学和基线特征(基于AKI分组)

Table 1.Patients demographics and clinical characteristics(n=333)based on AKI

*p<0.05,存在统计学差异。AKI,急性肾损伤;COPD,慢性阻塞性肺疾病;APACHE,急性生理学和慢性健康评估;SOFA,序贯器官衰竭评估。

4.2AKI危险因素多因素回归分析

AKI风险的多因素回归分析显示男性(OR=2.324,95%CI 1.256-4.301,p=0.007),高血压(OR=2.940,95%CI 1.327-6.516,p=0.008),ATIII(OR=0.979,95%CI0.967-0.992,p=0.001),这几项危险因素被确定为脓毒症相关性AKI的独立危险因素(表2)。

表2.AKI危险因素多因素回归分析

Table 2.Multivariable analysis for AKI and death risk(n=333)

*p<0.05,存在统计学差异。

4.3建立基于ATIII的脓毒症AKI预测模型

图2显示基于ATIII建立的脓毒症AKI预测模型为:

IN[P/(1-P)]=-0.163Gender-0.022ATIII+0.030Cr+0.681HBP-0.002age-4.895

模型拟合优度检验P=0.000,模型ROC曲线下面积=0.9906(见图2)。结果提示,该模型具有较高的区分度和校准度,且比以前已发表的模型准确度更高。

诊断阈值0.5,0.5-1范围内为脓毒症AKI高风险,其余为低风险。

实施例2

本实施例旨在进行内部验证,采用Bootstrap自抽样法,利用建模自身的数据来验证模型的预测效果。利用Bootstrap自抽样产生的新样本去评价列线图模型的准确性,使用R软件内部验证获得脓毒症相关性AKI的验证ROC曲线,曲线下面积0.9903。

实施例3

本实施例旨在进行外部验证,重新选取新样本数据集(test,n=159),使用R软件验证获得脓毒症相关性AKI的验证ROC曲线,曲线下面积0.9897。

实施例4

本实施例提供一种用于预测脓毒症急性肾损伤风险和预后的试剂盒,所述试剂盒含有检测ATIII和Cr表达量的试剂盒,所述试剂盒包括操作说明书,记载如下:按照常规测序方法检测ATIII和Cr表达量,再代入风险评分公式:IN[P/(1-P)]=-0.163Gender-0.022ATIII+0.030Cr+0.681HBP-0.002age-4.895;

其中Gender表示性别,性别为男性,Gender=1,性别为女性,Gender=0,ATIII表示抗凝血酶III表达量,Cr表示血清肌酐表达量,HBP表示高血压病史,患者以往有高血压病史,HBP=1,患者以往没有高血压病史,HBP=0,age表示年龄;

当计算结果为0.5-1时,代表脓毒症急性肾损伤高风险,其余为低风险。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。

完整详细技术资料下载
上一篇:石墨接头机器人自动装卡簧、装栓机
下一篇:一种高维删失数据下预测癌症预后风险的系统和方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!