Urban rail transit line passenger flow and train matching method considering passenger flow management and control measures

文档序号:8861 发布日期:2021-09-17 浏览:30次 中文

1. A method for matching passenger flow of an urban rail transit line and a train in consideration of passenger flow management and control measures is characterized in that OD data of the passenger flow in a certain time period, OD passenger flow direction proportion, a train running schedule, train number, vehicle order, maximum passenger carrying rate, total station number, total train number and passenger proportion of a direct train which is actively selected are input, relevant indexes of a matching interaction process of the passenger flow and the train after the train enters the station are sequentially calculated and output according to the obtained data and the passenger flow management and control measures when the first train is sent from the first station, each train is traversed until the train completely traverses the station which can be reached, and each station is traversed until all the trains completely traverse the station which can be reached, so that the matching of the passenger flow and the train is completed.

2. The method for matching passenger flow of the urban rail transit line with the train according to claim 1, wherein the method for matching passenger flow with the train comprises the following specific steps:

1) inputting passenger flow OD data per minute in a research period, OD passenger flow direction proportion, a train running schedule, train grouping number C, a vehicle member Q, a maximum passenger carrying rate k, a station total number M, a train total number N, a passenger proportion eta of actively selecting a through train and passenger flow control measures, and preprocessing the data;

2) initializing data, and taking j as 1;

3) let i equal to 1, t equal to tbeginWherein j is equal to {1,2, …, N } as train index, i is equal to {1,2, …, M } as station index,is indexed by time interval, tbeginTo the start of the study period,the departure time of the jth train from the station i;

4) calculating relevant indexes of passenger flow entering the station, including the number of people gathering outside the stationNumber of persons allowed to enter stationThe number of people staying outside the station

5) And (4) turning to the step (4) when t is equal to t +1), calculating relevant indexes of the passenger flow entering process of the first station in the next time interval, and repeating the step until the station is calculated to be at the stationRelevant indexes of passenger flow in-station process in the time period;

6) sequentially calculating and outputting relevant indexes of the matching interaction process of the passenger flow and the train after the first train departs from the first station and enters the station, including the number W of waiting passengersi jThe number of potential waiting peopleThe number of people getting offThe number of persons getting on the busNumber Pr of people staying at platformi jThe number of passengers carried in the intervalAnd full load factor

7) Turning to the step 4) when i is equal to i +1 until the train completely traverses to reach the station;

8) and j is made to be j +1, the step 3) is carried out until all the trains traverse all the reachable stations, and the matching of the passenger flow and the trains is completed.

3. The method for matching passenger flow of urban rail transit line with passenger flow management and control measures taken into consideration according to claim 2, wherein the passenger flow management and control measures comprise a current limiting station, a current limiting period and current limiting intensity

4. The method for matching passenger flow of an urban rail transit line with consideration of passenger flow management and control measures according to claim 3, wherein in the step 4), the calculation content of the relevant indexes of each passenger flow arrival process comprises:

A1) calculating the t time interval and the number of the gathering people outside the station of the station iThe expression is as follows:

in the formula:the number of people staying outside the station i at the t-1 time interval is zero at the initial time of the specified research;the number of passengers arriving at station i in the t-th time interval is shown by the input passenger flow OD dataAnd calculating the expression as follows:

wherein the content of the first and second substances,the number of passengers arriving at a station i in the t-th time interval and having a destination station u;

A2) calculating the t-th time interval, and allowing the number of people entering the station i due to passenger flow control measuresThe expression is as follows:

wherein the content of the first and second substances,the input current limiting strength, namely the current limiting rate, represents the proportion of limiting the number of the station entrances of the station i at the t time interval;

A3) calculating the number of the people staying outside the station at the t-th time interval and the station iThe expression is as follows:

5. the method for matching passenger flow of an urban rail transit line with consideration of passenger flow management and control measures according to claim 2, wherein in step 6), the calculation content of the relevant indexes of the matching interaction process of each post-arrival passenger flow and a train comprises:

B1) preprocessing the OD data of the passenger flow and calculating the time intervalNumber of passengers scheduled to station u, arriving at station iAnd in the time intervalNumber of passengers P arriving at station ii jThe expressions of the two are:

B2) calculating the number of the station entering and waiting people of the jth train when the jth train starts at the station i, wherein the expression is as follows:

wherein the content of the first and second substances,represents the train that passed station i before j;the binary variable is set, the value is 1, the train j can pass through the interval (i, i +1), otherwise, the train j cannot pass through the interval (i, i + 1);the variable is a binary variable, the value is 1, the train j stops at the station i, otherwise, the train j does not stop at the station i;is as followsThe number of the detention persons at the station i when the train is started;

B3) dividing waiting passengers: passengers with the specified proportion eta can actively judge whether the arriving train can directly reach the personal trip end station without transfer, and get on the train if the arriving train j can directly reach the personal trip end station, or else, get on the train if the arriving train can directly reach the personal trip end station; the passengers with the rest proportion of 1-eta are not actively selected and only according to the train capacityLimiting the quantity, and selecting the train with the latest train number to get on; the number of waiting passengers with the proportion of eta is recorded asThe number of waiting passengers with the ratio of 1-eta is recorded asThe total number of potential waiting people is recorded asThe expression is as follows:

wherein the content of the first and second substances,waiting for the number of waiting passengers of the jth train with the starting point of the trip passengers being station i and the terminal point of the trip passengers being station u;waiting for the jth train and actively judging whether the train reaches the destination for waiting for the number of waiting passengers, wherein the starting point of the passengers entering the train is station i, and the terminal point of the passengers entering the train is station u;the value is 1, the jth train can directly reach the station u from the station i, and otherwise, the jth train cannot directly reach the station u from the station i;

B4) if the train j is a small traffic route train, judging whether the station i is a small traffic route terminal station, and calculating the number of getting-off persons of the j-th train at the station i, wherein the expression is as follows:

wherein the content of the first and second substances,the number of passengers in the section (i-1, i) when the jth train starts from the station i;u,ithe passenger flow proportion of passengers going to each destination station i after getting on the bus at the station u is obtained by the input passenger flow OD flow direction proportion,the number of passengers getting on the station u for the jth train;

B5) judging whether the capacity of the train j is enough or not, and calculating the number of passengers getting on the train j at the station i, wherein the expression is as follows:

B6) if the train j is a small traffic route train, judging whether the station i is a small traffic route terminal station, and calculating the number of the detention persons at the station i when the j-th train is started, wherein the expression is as follows:

B7) calculating the number of passengers carried in the section (i, i +1) when the jth train starts from the station i, wherein the expression is as follows:

B8) calculating the full load rate of the section (i, i +1) when the jth train starts from the station i, wherein the expression is as follows:

Background

With the continuous expansion of urban population in China, the demand of residents on trips is increasing day by day. In order to relieve the congestion pressure of the traditional road traffic, a plurality of large cities are vigorously developed and constructed for urban rail traffic. Urban rail transit gradually becomes a main public transport mode for resident traveling by virtue of the advantages of convenience, safety, large capacity and the like. The perfection of urban rail transit network also drives the continuous rising of passenger flow demand.

Especially in the morning, evening and peak period, a large amount of commuting passenger flows are gathered in stations and trains of urban rail transit, and the operation safety and the transportation efficiency are seriously checked. In order to deal with various large passenger flow situations, passenger flow control measures are taken at some stations to limit passenger flow entering the stations and ensure that the passenger flow in the platform and the carriages is within a safe range. In addition, in the aspect of train organization, train operation measures are adjusted by means of train operation schemes such as large and small road crossing and jump stopping, so that large passenger flow is dealt with.

However, after passenger flow management and control and adjustment of train operation measures are performed, currently, the existing assessment on the operation state of the urban rail transit station and the passenger flow management and control measures is not fine enough. Generally, the quality of the operation state and the effect of the passenger flow control method need to be measured by objective index values, and the obtaining of various microscopic index values needs to depend on the refined interactive matching of the passenger flow and the train, namely, a passenger flow and train matching algorithm between stations of the urban rail transit line considering passenger flow control measures is designed. The existing interactive algorithm of passenger flow and train mainly has the following disadvantages:

1. the passenger flow control is not considered, all OD passenger flow demand data are directly input as the number of passengers waiting for entering the station, and the final result cannot be suitable for evaluating the station adopting the passenger flow control measures;

2. only the train running mode of a single large traffic road is considered, and the interactive algorithm is not suitable for the train running scheme adopting the large traffic road and the small traffic road.

3. The matching process of the passenger flow and the train is not fine enough, which is mainly reflected in the time interval division of the research time period, and at present, the research is generally carried out at the unit time interval of 15min, 30min or 60 min.

Disclosure of Invention

The invention aims to overcome the defects of the prior art and provide a passenger flow and train matching method of an urban rail transit line, which considers passenger flow management and control measures.

The purpose of the invention can be realized by the following technical scheme:

a method for matching passenger flow of an urban rail transit line and a train in consideration of passenger flow management and control measures is characterized by comprising the steps of obtaining passenger flow OD data, OD passenger flow direction proportions, a train running schedule, train number, vehicle order, maximum passenger carrying rate, total station numbers, total train numbers and passenger proportions of actively selecting direct trains in a certain time period, sequentially calculating and outputting relevant indexes of a matching interaction process of the passenger flow and the train after the train enters the station when the first train is sent from the first station by combining with the passenger flow management and control measures according to the obtained data, traversing each train until the train completely traverses the station to which the train can reach, traversing each station until all the trains completely traverse the station to which the train can reach, and completing the matching of the passenger flow and the train. The method for matching the passenger flow with the train comprises the following specific steps:

1) inputting passenger flow OD data (passenger flow data per minute in a research period), OD passenger flow direction proportion, a train operation schedule, train grouping number C, a vehicle member Q, a maximum passenger carrying rate k, a station total number M, a train total number N, a passenger proportion eta of actively selecting a direct train and passenger flow control measures, and preprocessing the data;

2) initializing data, and taking j as 1;

3) let i equal to 1, t equal to tbeginWherein j is equal to {1,2, …, N } as train index, i is equal to {1,2, …, M } as station index,is indexed by time interval, tbeginTo the start of the study period,the departure time of the jth train from the station i;

4) calculating relevant indexes of passenger flow entering the station, including the number of people gathering outside the stationNumber of persons allowed to enter stationThe number of people staying outside the station

5) And (4) turning to the step (4) when t is equal to t +1), calculating relevant indexes of the passenger flow entering process of the first station in the next time interval, and repeating the step until the station is calculated to be at the stationRelevant indexes of passenger flow in-station process in the time period;

6) sequentially calculating and outputting relevant indexes of the matching interaction process of the passenger flow and the train after the first train departs from the first station and enters the station, including the number of waiting passengersNumber of potential waiting peopleThe number of people getting offThe number of persons getting on the busNumber of people staying at platformNumber of passengers in intervalAnd full load factor

7) Turning to the step 4) when i is equal to i +1 until the train completely traverses to reach the station;

8) and j is made to be j +1, the step 3) is carried out until all the trains traverse all the reachable stations, and the matching of the passenger flow and the trains is completed.

The passenger flow management and control measures comprise a flow limiting station, a flow limiting time period and flow limiting intensity

In step 4), the calculation content of the relevant indexes of each passenger flow arrival process comprises the following steps:

A1) calculating the t time interval and the number of the gathering people outside the station of the station iThe expression is as follows:

in the formula:the number of people staying outside the station i at the t-1 time interval is zero at the initial time of the specified research;the number of passengers arriving at station i in the t-th time interval is shown by the input passenger flow OD dataAnd calculating the expression as follows:

wherein the content of the first and second substances,the number of passengers arriving at a station i in the t-th time interval and having a destination station u;

A2) calculating the t-th time interval, and allowing the number of people entering the station i due to passenger flow control measuresThe expression is as follows:

wherein the content of the first and second substances,the input current limiting strength, namely the current limiting rate, represents the proportion of limiting the number of the station entrances of the station i at the t time interval;

A3) calculating the number of the people staying outside the station at the t-th time interval and the station iThe expression is as follows:

in step 6), the calculation content of the relevant indexes of the matching interaction process of each post-arrival passenger flow and the train comprises the following steps:

B1) preprocessing the OD data of the passenger flow and calculating the time intervalNumber of passengers scheduled to station u, arriving at station iAnd in the time intervalNumber of passengers arriving at station iThe expressions of the two are:

B2) calculating the number of the station entering and waiting people of the jth train when the jth train starts at the station i, wherein the expression is as follows:

wherein the content of the first and second substances,represents the train that passed station i before j;the binary variable is set, the value is 1, the train j can pass through the interval (i, i +1), otherwise, the train j cannot pass through the interval (i, i + 1);the variable is a binary variable, the value is 1, the train j stops at the station i, otherwise, the train j does not stop at the station i;is as followsTrain departureThe number of the staying people at the station i;

B3) dividing waiting passengers: passengers with the specified proportion eta can actively judge whether the arriving train can directly reach the personal trip end station without transfer, and get on the train if the arriving train j can directly reach the personal trip end station, or else, get on the train if the arriving train can directly reach the personal trip end station; the passengers with the rest proportion of 1-eta are not actively selected, and the train with the latest train number is selected to get on the train only according to the limit of the train capacity; the number of waiting passengers with the proportion of eta is recorded asThe number of waiting passengers with the ratio of 1-eta is recorded asThe total number of potential waiting people is recorded asThe expression is as follows:

wherein the content of the first and second substances,waiting for the number of waiting passengers of the jth train with the starting point of the trip passengers being station i and the terminal point of the trip passengers being station u;waiting for the jth train and actively judging whether the train reaches the destination for waiting for the number of waiting passengers, wherein the starting point of the passengers entering the train is station i, and the terminal point of the passengers entering the train is station u;and if the value is a binary variable, the value is 1, the jth train can directly reach the station u from the station i, and otherwise, the jth train cannot directly reach the station u from the station i. Stipulating: the passenger arrival proportion of the j-th train from the station i to the station u in the trip plan is the same as the passenger waiting proportion of the j-th train waiting from the station i to the station u in the trip plan.

B4) If the train j is a small traffic route train, judging whether the station i is a small traffic route terminal station, and calculating the number of getting-off persons of the j-th train at the station i, wherein the expression is as follows:

wherein the content of the first and second substances,the number of passengers getting on the station u for the jth train; lambda [ alpha ]u,iThe passenger flow proportion of passengers going to each destination station i after getting on the bus at the station u is shown and is obtained by the input passenger flow OD flow direction proportion;

B5) judging whether the capacity of the train j is enough or not, and calculating the number of passengers getting on the train j at the station i, wherein the expression is as follows:

B6) if the train j is a small traffic route train, judging whether the station i is a small traffic route terminal station, and calculating the number of the detention persons at the station i when the j-th train is started, wherein the expression is as follows:

B7) calculating the number of passengers carried in the section (i, i +1) when the jth train starts from the station i, wherein the expression is as follows:

B8) calculating the full load rate of the section (i, i +1) when the jth train starts from the station i, wherein the expression is as follows:

compared with the prior art, the method takes the influence of passenger flow control measures on the passenger arrival process and the influence of train operation schemes and train capacity limitation on the passenger boarding process into consideration, and constructs the passenger flow and train matching method from the perspective of the passenger full travel chain. The algorithm gives consideration to two train driving schemes of single traffic routes and large and small traffic routes and a station passenger flow control scheme, 1min is taken as time granularity to carry out fine research on a passenger flow-vehicle flow matching process, dynamic deduction of each passenger travel route and a travel process is realized, and various operation state evaluation indexes of stations, trains and the like are obtained, wherein the operation state evaluation indexes include the number of waiting persons, the number of getting-off persons, the number of getting-on persons, the number of remaining persons in a platform and the passenger carrying capacity and the full load rate of each train in each section in each departure interval. Meanwhile, the invention particularly considers the selection behavior of passengers on the train, divides the waiting passengers based on the statistical result of the station passenger research data, and leads a certain proportion of waiting passengers to preferentially select the train to directly ride, and leads the other part of the waiting passengers to ride the train with enough nearby selection capability and then to transfer the train, thus leading the indexes of the number of waiting passengers at the platform, the passenger carrying capacity of the train and the like to be closer to the actual situation. In conclusion, the method and the system can be used for monitoring the operation state of the urban rail transit line and quantitatively evaluating the effect of passenger flow control measures, and provide more refined data support and decision support for scheme formulation and real-time adjustment of a train operation organization and a station passenger transportation organization.

Drawings

FIG. 1 is a diagram of an overall embodiment of a passenger flow and train matching method for an urban rail transit line with passenger flow management and control measures taken into account in the examples;

FIG. 2 is a schematic operation flow chart of a passenger flow and train matching method for an urban rail transit line in consideration of passenger flow management and control measures in the embodiment;

fig. 3 is a diagram illustrating the interaction matching between the passenger flow and the train in the train driving scheme adopting the large and small traffic routes in the embodiment.

Detailed Description

The invention is described in detail below with reference to the figures and specific embodiments. It is to be understood that the embodiments described are only a few embodiments of the present invention, and not all embodiments. All other embodiments, which can be obtained by a person skilled in the art without any inventive step based on the embodiments of the present invention, shall fall within the scope of protection of the present invention.

Examples

Fig. 2 is a schematic view of a specific operation flow of the method for matching passenger flows of an urban rail transit line with passenger flow management and control measures taken into consideration, and the method for matching passenger flows of stations of the urban rail transit line with the trains in consideration of passenger flow management and control when the trains are in large and small routes of traffic is obtained by combining the passenger flow and train matching interaction process in the train running scheme adopting large and small routes of traffic shown in fig. 3, and specifically comprises the following steps:

s1: inputting passenger flow OD data (passenger flow data per minute in a research period), OD passenger flow direction proportion, train operation schedule, train number C, vehicle member Q, maximum passenger carrying rate k, total station number M, total train number N, passenger proportion eta of actively selecting direct trains and flow limiting strategy (comprising flow limiting stations, flow limiting periods and flow limiting intensity))。

Preprocessing the OD data of the passenger flow, wherein the processing expression is as follows:

in the above three formulas, u is the station number, j belongs to {1,2, …, N } as the train index, i belongs to {1,2, …, M } as the station index,is indexed by time interval, tbeginIndicating the start of the study period,the departure time of the jth train from the station i is shown.The number of passengers arriving at station i in the t-th time interval and having destination station u.

Preprocessing a train running schedule, and recording whether a train j stops at a station i as a binary variableA value of 1 indicates that train j is parked at station i, otherwise indicates that train j is not parked at station i.

Computing binary variablesA value of 1 indicates that the train j can pass through the section (i, i +1), otherwise indicates that the train j cannot pass through the section (i, i +1), and the expression is:

computingRepresents the train that passes station i before j, with the expression:

computing binary variablesThe value of 1 represents that the jth train can directly reach the station u from the station i, otherwise, the jth train cannot directly reach the station u from the station i, and the expression is as follows:

s2: initializing data: starting from the first train, j equals 1.

S3: traversing the first station, i ═ 1.

S4: from the initial time of study, t ═ tbegin

S5: calculating the t time interval and the number of the gathering people outside the station of the station iThe expression is as follows:

the number of passengers arriving at station i in the t-th time interval is shown by the input passenger flow OD dataAnd calculating the expression as follows:

in the formula (I), the compound is shown in the specification,the number of passengers arriving at station i in the t-th time interval and having destination station u.

S6: calculating the t-th time interval, and allowing the number of people entering the station i due to passenger flow control measuresThe expression is as follows:

s7: calculating the number of the people staying outside the station at the t-th time interval and the station iThe expression is as follows:

s8: let t equal t +1, judge t andthe magnitude relationship of (1), ifGo to step S5, otherwise go to step S9.

S9: calculating the number of the passengers waiting for the next train when the jth train departs from the station iThe expression is as follows:

in the formula (I), the compound is shown in the specification,is shown asWhen the train is started, the number of the detention persons at the station i.

S10: calculating the number of waiting persons of waiting for the jth train with the starting point of the trip passengers as the station i and the ending point of the trip passengers as the station uThe expression is as follows:

in the formula (I), the compound is shown in the specification,the number of passengers arriving at station i for the t-th time interval and having destination station u.

S11: and acquiring the passenger proportion eta of the actively selected through train. Among the passengers entering the platform, the passengers with the set proportion eta judge whether the jth train can directly reach the trip destination u, and calculate the number of the passengers waiting for the jth train at the station i and waiting for the passengers to go to the station uAnd the number of waiting passengers at station i for the jth trainThe expression is as follows:

s12: of the passengers entering the platform, the passengers with the proportion of 1-eta can not actively judge whether the train directly arrives at the trip destination, and the number of waiting passengers at the station i for the jth train is calculated for the partThe expression is as follows:

s13: calculating the total potential waiting number of the j-th train at the station iThe expression is as follows:

s14: judging whether the station i is a small traffic route terminal station or not, and calculating the number of the get-off persons of the jth train at the station iThe expression is as follows:

in the formula (I), the compound is shown in the specification,the number of passengers in the section (i-1, i) when the jth train is sent from the station i; lambda [ alpha ]u,iIndicating the proportion of passenger flow to each destination station i after passengers get on the bus at station u, and the flow is indicated by the input passenger flow ODProportional mixing;the number of passengers getting on the station u for the jth train.

S15: judging whether the remaining capacity of the train meets the passenger flow demand of potential arrival waiting and whether the train j stops at the station i, and calculating the number of passengers getting on the station i by the jth train, wherein the expression is as follows:

s16: judging whether the station i is a small traffic route terminal, and calculating the number of the detention persons of the station i when the jth train is started, wherein the expression is as follows:

s17: calculating the number of passengers carried in the section (i, i +1) when the jth train starts from the station i, wherein the expression is as follows:

s18: calculating the full load rate of the section (i, i +1) when the jth train starts from the station i, wherein the expression is as follows:

s19: if i is equal to i +1, the magnitude relationship between i and the total number M of stations is determined, and if i is less than or equal to M, the process goes to step S4.

S20: otherwise, let j equal to j +1, judge the magnitude relation of j and train total number N, if j is less than or equal to N, go to step S3; otherwise, outputting a calculation result, and finishing the algorithm.

The invention considers the influence of passenger flow control measures on the passenger arrival process, the influence of a train operation scheme and the influence of train capacity limitation on the passenger boarding process, and constructs a passenger flow and train matching method from the perspective of the passenger full travel chain. The method has the advantages that two train driving schemes of single traffic routes and large and small traffic routes and a station passenger flow control scheme are considered, 1min is taken as time granularity to carry out fine research on a passenger flow-vehicle flow matching process, dynamic deduction of each passenger travel route and a travel process is realized, and various operation state evaluation indexes of stations, trains and the like are obtained, wherein the operation state evaluation indexes include the number of waiting persons, the number of getting-off persons, the number of getting-on persons, the number of remaining persons in a platform, and the passenger carrying capacity and the full load rate of each train in each section in each departure interval. Meanwhile, the invention particularly considers the selection behavior of passengers on the train, divides the waiting passengers based on the statistical result of the station passenger research data, and leads a certain proportion of waiting passengers to preferentially select the train to directly ride, and leads the other part of the waiting passengers to ride the train with enough nearby selection capability and then to transfer the train, thus leading the indexes of the number of waiting passengers at the platform, the passenger carrying capacity of the train and the like to be closer to the actual situation.

While the invention has been described with reference to specific embodiments, the invention is not limited thereto, and those skilled in the art can easily conceive of various equivalent modifications or substitutions within the technical scope of the invention. Therefore, the protection scope of the present invention shall be subject to the protection scope of the claims.

完整详细技术资料下载
上一篇:石墨接头机器人自动装卡簧、装栓机
下一篇:一种城市综合能源系统的故障自愈评估方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!