一种微机械加速度计及其校准补偿方法
技术领域
本发明属于加速度测量
技术领域
,更具体地,涉及一种微机械加速度计及其校准补偿方法。背景技术
通过静电修调技术,可以降低微机械加速度计的等效刚度,改变微机械加速度计的量程和灵敏度,同时为了提升微机械加速度计的量程和线性度,可以使微机械加速度计同时工作在静电修调和闭环控制状态。非对称式梳齿电容是一种常用于MEMS领域的静电修调设计,可以用于降低微机械加速度计或陀螺仪的等效刚度实现刚度修调;而非对称式梳齿电容的吸合电压和吸合时间也可以用于加速度测量。但采用非对称式梳齿电容,会改变加速度计的中心位置,引入非对称性问题。另一方面,微机械加速度计受到温度影响产生漂移效应,是制约加速度测量精度的关键问题之一。目前,主动抑制微机械加速度计输出漂移的方法大多借助温度传感器,但同时增加了微机械加速度计系统的复杂性。
发明内容
针对现有的微机械加速度计上的缺点和不足,本发明提供了一种微机械加速度计及其校准补偿方法,利用双边平行板式梳齿电容改变微机械加速度计的等效刚度,并将其工作在力平衡闭环状态,分别对参考位置和等效刚度进行校准和补偿闭环,从而主动抑制由温度变化引起的漂移问题,该校准补偿方法更为简单。
本发明采用的技术方案如下:
一种微机械加速度计,包括加速度敏感单元、静电刚度单元、位移检测单元和力平衡单元;
所述的加速度敏感单元包含质量块和弹性梁结构,所述的质量块通过弹性梁结构与水平敏感轴方向上的锚区相连;
所述的静电刚度单元是由双边平行板式梳齿电容组成,包括移动梳齿和固定梳齿,所述的移动梳齿与质量块相连,固定梳齿与锚区相连,所述的移动梳齿与固定梳齿呈中心轴对称分布,即移动梳齿沿水平敏感轴正负方向与固定梳齿的间隙一致;双边平行板式梳齿电容在偏置调谐电压作用下产生静电负刚度;
所述的位移检测单元由一组位移检测差分变面积电容和相对应的差分电极组成,通过在差分电极上施加幅值相同、符号相反的载波电压,实现对电容变化信号的载波调制;
所述的力平衡单元由一组力平衡差分变面积电容和相对应的差分电极组成,通过在差分电极上施加力平衡电压,使得质量块工作在参考位置上。
一种上述的微机械加速度计的校准控制方法,包括闭环参考位置校准补偿方法和等效刚度校准补偿方法;
所述的闭环参考位置校准补偿方法包括以下步骤:
1.1)选定初始位置作为力平衡反馈参考位置,完成加速度计闭环控制,并在静电刚度单元上施加调谐电压Vt;
1.2)在偏置调谐电压上引入一个频率为ωo的带宽外校准信号;
1.3)质量块受到水平敏感轴方向上的加速度时会发生位移变化,从而会与位移检测差分变面积电容之间产生电容变化信号;对电容变化信号依次进行载波解调、校准频率ωo解调和低通滤波处理,得到位移扰动量Vs0;
1.4)将扰动量Vs0经过比例、积分和微分运算,得出参考位置补偿控制量ΔVyref,加至初始参考位置信号Vyref上,更新参考位置信号V′yref=Vyref+ΔVyref,直至位移扰动量降为零,此时双边平行板式梳齿电容处于对称零位;
所述的等效刚度校准补偿方法包括以下步骤:
2.1)在开环控制下,在力平衡差分变面积电容的差分电极上施加固定力平衡电压,使得加速计工作在步骤1.4)校准后的参考位置上;所述的力平衡电压是由力平衡控制信号经推挽电路产生的;
2.2)通过逐步增加调谐电压,直至开环控制下的加速度计出现吸合现象,得到临界吸合电压Vpi;
2.3)重新闭环控制,在闭环参考位置信号V′yref上加入一个频率为ωi的带宽内校准信号,并将调谐电压设置为Vt=αVpi,α为电压系数;
2.4)对闭环反馈的力平衡控制信号进行校准频率ωi解调和低通滤波处理,得到表征等效刚度的电压信号Vkref。
2.5)将电压信号Vkref设定为参考刚度值,建立刚度补偿闭环,具体为是根据步骤2.4)的方法提取表征等效刚度的更新电压信号V’kref,将Vkref和V’kref的偏差值经过比例、积分和微分运算,得到调谐电压的补偿量ΔVt,将其加到初始调谐电压Vt上,从而使得等效刚度值始终维持在参考刚度值上。
作为本发明的优选,所述的带宽外校准信号和带宽内校准信号为正弦信号或方波信号。
作为本发明的优选,所述的双边平行板式梳齿电容的等效静电负刚度的表达式为:
Vt=αVpi
其中,kele为双边平行板式梳齿电容的等效静电负刚度,ε为介电常数,A为固定梳齿和移动梳齿交叠面积,Vt为调谐电压,Vpi为吸合电压,α为电压系数,d0为双边平行板式梳齿电容中移动梳齿与固定梳齿的初始间隙,yref为参考位移,k为加速度计的机械刚度。
总体来说,通过上述本发明所构思的技术方案和现有技术相比,具有以下有益效果:
(1)本发明同时应用静电修调和力平衡闭环控制技术,可以提高微机械加速度计的量程、线性度和精度,扩宽了微机械加速度计的应用场景和工作模式。
(2)本发明通过提出了一种闭环参考位置和等效刚度的校准和补偿方法,将参考位置和等效刚度解耦处理,分别实现了参考位置和等效刚度的自动校准和补偿闭环控制,可以主动抑制微机械加速度计的输出漂移。
(3)本发明中微机械加速度计可以在对加工工艺要求不高的情况下,利用静电修调技术简单实现低刚度甚至准零刚度,所提出的刚度校准控制方法易于在数字控制器中实现。
附图说明
图1是本发明实施例提供的微机械加速度计的结构示意图;
图2是本发明实施例提供的微机械加速度计的控制信号示意图;
图3是本发明中微机械加速度计的闭环参考位置校准及补偿控制流程示意图;
图4是本发明中微机械加速度计的等效刚度校准及补偿控制流程示意图;
在所有附图中,相同的附图标记用来表示相同的结构,其中:1为锚区,2为弹性梁结构,3为力平衡差分变面积电容,4为双边平行板式梳齿电容,5为位移检测差分变面积电容,Va为力平衡闭环控制电压,Vb为力平衡电路偏置电压,Vc为载波电压,Vs为位移等效电压,Vt为调谐电压。
具体实施方式
为了更加清楚的表达本发明的目的、技术方案和优点,下面结合附图和公式推导进一步解释。应当理解,此处的原理用以解释本发明,但并不限定于本发明。
本发明包括质量块、弹性梁、双边平行板式梳齿电容以及变面积电容等结构。图1是本发明实施例提供的微机械加速度计的结构示意图,包括锚区1、弹性梁结构2、力平衡差分变面积电容3、双边平行板式梳齿电容4、位移检测差分变面积电容5。
结合图1和图2,其中加速度敏感单元包括质量块和弹性梁结构,所述的质量块通过弹性梁结构与水平敏感轴方向上的锚区相连。
静电刚度单元是由双边平行板式梳齿电容4组成,包括移动梳齿和固定梳齿,所述的移动梳齿与质量块相连,固定梳齿与锚区相连,移动梳齿与固定梳齿呈中心轴对称分布,即移动梳齿沿敏感轴正负方向与固定梳齿的间隙一致;双边平行板式梳齿电容4在偏置调谐电压Vt作用下,产生静电负刚度。
位移检测单元是由一组位移检测差分变面积电容5构成,通过在差分电极上施加幅值相同、符号相反的载波电压±Vc,并将质量块电极引出电容变化信号,经CV读出电路和载波解调,得到表征位移信号的位移等效电压Vs。
力平衡单元是由一组力平衡差分变面积电容3构成,力平衡控制信号经推挽电路,得到一对施加至差分电极上的力平衡电压Vb±Va。通过在差分电极上施加力平衡电压,使得质量块工作在参考位置上。
本发明中静电刚度单元在一定调谐电压下可以产生等效负刚度,表达式为:
其中,调谐电压Vt=αVpi(α为电压系数),临界吸合电压k为加速度计机械刚度,d0为双边平行板式梳齿电容中移动梳齿与固定梳齿的初始间隙,ε为介电常数,A为交叠面积,yref为参考位移,kele为双边平行板式梳齿电容的等效负刚度。
因此,通过改变调谐电压,即可对加速度计的等效刚度进行调节,当梳齿电容的参考位置处于零点时,静电等效刚度与调谐电压成平方关系。
本发明的微机械加速度计可以工作在开环和闭环两种检测方式,其中在闭环检测模式中,力平衡单元产生一个能够完全抵消质量块惯性力的静电力。当梳齿电容的实际位置不处于零点时,力平衡单元还需要额外补偿梳齿静电力和弹性力,此时,梳齿电容静电力Ft和力平衡差分变面积电容静电力Fa的表达式为:
Fa=(α2-1)ky
其中,调谐电压Vt=αVpi,吸合电压y为实际位移。
由上式可知,力平衡单元产生的静电力是由α、k和y决定的。当固定y时,力平衡单元控制电压与等效刚度(α2-1)k成比例关系。因此,可以在带宽范围内,通过在参考位置上引入校准信号,并在闭环反馈的力平衡控制信号解调出响应信号的方式,提取出表征等效刚度的电压信号,通过改变调谐电压即可搭建刚度补偿闭环。
当梳齿电容的参考位置偏离零点,即y≠0,梳齿电容静电力不为零且与位移成正比。因此,可以通过在调谐电压上引入一个带宽外校准信号,并在位移等效电压解调出响应信号的方式,完成对闭环参考位置的校准,并进一步搭建闭环补偿参考位置,使其回归至零点。
基于本发明中微机械加速度计上述特性,在本发明的一项具体实施中,对力平衡闭环中参考位置进行校准和补偿控制,从而保证加速度计的梳齿电容一直处于零点位置。
基于本发明中微机械加速度计上述特性,在本发明的一项具体实施中,对加速度计等效刚度进行校准和补偿控制,从而维持加速度计在工作过程中的等效刚度恒定不变,而由此对加速度测量带来的干扰可以通过相关检测等方法消除。
下面根据图3和图4所示的示意图对本发明提出的加速度计参考位置校准和补偿方法、等效刚度校准和补偿方法进行具体的介绍。
图3为一种闭环参考位置校准和补偿方法:
1)首先,选定初始位置作为力平衡反馈参考位置,完成加速度计闭环控制,并在静电刚度单元上施加调谐电压Vt。
2)通过在偏置调谐电压Vt上引入一个带宽外校准信号,可以是正弦信号或方波信号(频率为ωo),质量块在受到水平敏感方向上的加速度时会发生位移变化,从而产生电容变化信号。
3)对电容变化信号进行载波调制和两次解调,第一次为载波解调(解调频率为ωc),第二次为校准频率解调(解调频率为ωo),经低通滤波,得到一个位移扰动量Vs0。
4)在控制器内将扰动量Vs0经过比例、积分和微分运算,得出一个参考位置校正控制量ΔVyref,叠加至初始参考位置控制信号Vyref上,即V′yref=Vyref+ΔVyref。
5)上述2~4步为自动在线更新过程。
图4为一种等效刚度校准和补偿方法:
1)经过上述参考位置校准,得出校准后的参考位置控制信号V’yref以及力平衡电压Va0;
2)在开环控制下,在力平衡电极上施加力平衡电压Va0,使加速度计工作在上述校准后的参考位置上,所述的力平衡电压是由力平衡控制信号经推挽电路产生的;
3)逐步增加调谐电压Vt,直至开环加速度计出现吸合现象,得到临界吸合电压Vpi;
4)将加速度计工作在闭环状态,并在参考位置控制信号V’yref上加一个频率为ωi的带宽内校准信号,可以是正弦Vyref0 sin(ωit)或方波信号,并将调谐电压设置为Vt=αVpi,α为电压系数;
5)对闭环反馈的力平衡控制信号进行解调(解调频率为ωi)和低通滤波,得出出表征等效刚度的电压信号Vkref。
6)将经过刚度校准得到电压信号Vkref设定为参考刚度值,并根据步骤5)的方法提取表征等效刚度的更新电压信号V’kref,在控制器内经比较得到偏差值,经过比例、积分和微分运算,得到调谐电压的补偿量ΔVt,加至初始梳齿调谐电压Vt上,从而维持V’kref=Vkref,即等效刚度值始终维持在参考刚度值上。
本领域的技术人员应理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
- 上一篇:石墨接头机器人自动装卡簧、装栓机
- 下一篇:一种扫描电镜教学模型装置及其使用方法