一种检测赭曲霉毒素a的电化学发光免疫传感器的制备和应用
技术领域
本发明涉及一种检测赭曲霉毒素A的修饰电极的制备方法及所得产品,还涉及一种检测赭曲霉毒素A的电化学发光免疫传感器,以及它们在检测赭曲霉毒素A中的应用,属于电致化学发光检测
技术领域
。背景技术
赭曲霉毒素A(OTA)是一种由赭曲霉、黄曲霉等真菌产生的次级代谢产物,广泛存在于谷物、饲料、坚果、葡萄及葡萄酒、咖啡及其制品中。OTA性质稳定,不易分解,能长期在人和动物体内积累,不仅对肾脏、肝脏、神经系统损害极大,还具有致畸性和致癌性。由此可见, 灵敏的检测食物中的OTA的表达量对人类健康是非常重要的。1993年,国际癌症中心将OTA认定为2B类致癌物,随后,欧盟、美国等针对OTA在食品中的限量制定了标准,我国也针对谷物、豆类、葡萄酒、辣椒等制定了标准检测方法和严格的OTA限量标准。GB 5009.96 -2016规定了食品中OTA的标准检测方法,并针对不同检测方法规定了限量。
目前,OTA检测方法不断发展,薄层色谱法、高效液相色谱法、酶联免疫吸附技术、时间分辨荧光免疫分析技术、胶体金免疫层析技术、化学发光酶免疫分析技术等检测技术日趋成熟。其中,薄层色谱法和胶体金免疫层析技术方法简单、检测成本低,但灵敏度也相对较低;高效液相色谱法的灵敏度高、重现性好,但成本高、操作过程复杂;酶联免疫吸附技术操作简单,但灵敏度低。
电化学发光检测技术(ECL)操作简单、灵敏度高、检测速度快、检测范围宽,成为了OTA定性、定量快速检测的新的发展方向。近年来,研究者们开发了大量的新型OTA电化学发光传感器,并且应用于小麦、玉米、葡萄酒等实际样品的检测,但大多是以OTA适配体为识别分子。例如,CN 101936940A公开了一种电化学发光适配体传感器检测赭曲霉毒素A的方法,该方法使用OTA适配体作为识别元件,异鲁米诺作为发光试剂,检测范围为0-3 ng/mL,检测限为0.007 ng/mL,检测范围窄。为了构建灵敏度更高、特异性更好、检测范围更宽的ECL传感器,有研究者使用OTA抗体作为识别分子构建ECL免疫传感器,并用于橙汁样品的检测,但是OTA抗体储存条件苛刻,有机耐受力低,限制了该方法的广泛应用。
发明内容
针对现有技术存在的不足,本发明提供了一种检测赭曲霉毒素A的修饰电极的制备方法,该方法首次尝试使用OTA纳米抗体作为识别分子构建修饰电极,该修饰电极作为ECL免疫传感器的工作电极时,具有高特异性、高灵敏度、检测范围宽的特点,且稳定性好,OTA纳米抗体有机耐受力能力高,应用范围更广。
OTA是极性小分子物质,需要用甲醇提取,难免会有甲醇残余,传统抗体(单克隆抗体或者多克隆抗体)结构复杂,对有机溶剂耐受度低,为了克服OTA传统抗体存在的不足,一些研究者开发了纳米抗体。纳米抗体是具有完整抗原识别能力的最小抗体片段,其分子量约为15 kDa左右。与传统抗体相比,纳米抗体分子量小、有较高的水溶性和稳定性、亲和力强、对甲醇耐受力强,抗基质干扰能力强。
本发明采用OTA纳米抗体Nb28作为识别元件,构建电化学发光免疫传感器,为纳米抗体在电化学发光技术领域的发展提供了参考。本发明具体技术方案如下:
一种检测赭曲霉毒素A的修饰电极的制备方法,该方法包括以下步骤:
(1)将蛋壳粉与HAuCl4溶液混合在一起,使蛋壳粉充分吸收金离子;
(2)吸收金离子后的蛋壳粉干燥,焙烧,得到Au/CaCO3纳米颗粒;
(3)将Au/CaCO3纳米颗粒分散到Nafion溶液中,得到悬浮液,将该悬浮液振荡、离心、洗涤,得到Au/CaCO3/Nafion纳米颗粒;
(4) 将Au/CaCO3/Nafion纳米颗粒分散在水中,所得悬浮液滴到电极表面,干燥,得Au/CaCO3/Nafion修饰电极;
(5)将Au/CaCO3/Nafion修饰电极浸入Ru(bpy)3 2+溶液中,孵育后取出后清洗干燥,得Ru(bpy)3 2+/Au/CaCO3/Nafion修饰电极;
(6)在Ru(bpy)3 2+/Au/CaCO3/Nafion修饰电极表面滴加赭曲霉毒素A 纳米抗体Nb28溶液,进行孵育,孵育后清洗,然后将修饰电极与1-1.5 wt%的BSA溶液孵育,孵育后清洗干燥,得检测赭曲霉毒素A的修饰电极。
进一步的,所述电极可以是现有技术中报道的任意能够用于电化学发光免疫传感器的工作电极,例如玻碳电极(GCE)。
进一步的,步骤(1)中,HAuCl4溶液的浓度为5-15 mmol/L,蛋壳粉与HAuCl4溶液的用量关系为:1g:5-10 mL。
进一步的,步骤(1)中,将蛋壳粉与HAuCl4溶液在搅拌下混合10-12 h,使蛋壳粉充分吸收金离子。
进一步的,步骤(2)中,吸收金离子后的蛋壳粉在500-550℃下煅烧1-2 h。
进一步的,步骤(3)中,Nafion溶液的浓度为2-5wt%,每1 mgAu/CaCO3纳米颗粒加入1-2 mLNafion溶液中配成悬浮液。Au/CaCO3纳米颗粒在Nafion溶液中振荡2-3 h,然后离心、水洗。离心的转速一般为8000-12000 r/min,离心时间为10-15 min。
进一步的,步骤(4)中,Au/CaCO3/Nafion纳米颗粒在水中的浓度为1-2 mg/mL,将5-10 μL悬浮液滴到电极表面。
进一步的,步骤(5)中,Ru(bpy)3 2+溶液的浓度为15-25 mmol/L,Au/CaCO3/Nafion修饰电极浸入Ru(bpy)3 2+溶液中,室温下孵育1-1.5 h。
进一步的,步骤(6)中,赭曲霉毒素A 纳米抗体Nb28是一种仅由一个重链可变区组成的单域抗体,分子质量小,结构稳定,抗原亲和力高,在疾病、癌症诊断、小分子有害物质和毒素检测等领域表现出巨大的应用前景。赭曲霉毒素A 纳米抗体Nb28的核苷酸序列如SEQ ID NO:1所示,可以通过构建含有该核苷酸序列的重组工程菌的方式表达得到该纳米抗体。
进一步的,步骤(6)中,在Ru(bpy)3 2+/Au/CaCO3/Nafion修饰电极表面滴加4-5μL浓度为20-25 μg/mL的赭曲霉毒素A 纳米抗体Nb28溶液,37 ℃孵育4-5 h。
进一步的,步骤(6)中,修饰电极与BSA溶液在室温下孵育0.5-1 h。
进一步的,按照上述方法制备的检测赭曲霉毒素A的修饰电极也在本发明保护范围之内。本发明修饰电极在电极表面固载Au/CaCO3纳米颗粒,可以增大电极表面吸附面积,为发明试剂Ru(bpy)3 2+提供更多的吸附位点,同时能够共价结合更多Nb28,达到提高ECL传感器灵敏度的作用。本发明在电极表面逐步修饰Ru(bpy)3 2+和Nb28,用BSA封闭非特异性结合位点,当待检测物质OTA在修饰电极上孵育时,抗原-抗体的特异性结合作用会阻碍电极表面的电子传递,使传递效率降低,从而降低ECL信号,以达到对未知浓度样品检测的目的。
本发明还提供了上述检测赭曲霉毒素A的修饰电极在检测赭曲霉毒素A中的应用。该修饰电极可以作为电化学发光免疫传感器的工作电极,搭配辅助电极和参比电极的三电极体系,实现高灵敏度、高特异性检测赭曲霉毒素A的目的。
进一步的,本发明还提供了一种检测赭曲霉毒素A的电化学发光免疫传感器,该电化学发光免疫传感器包括工作电极,所述工作电极为上述检测赭曲霉毒素A的修饰电极。
进一步的,所述电化学发光免疫传感器还包括辅助电极和参比电极,所述辅助电极为铂电极,所述参比电极为甘汞电极。
本发明电化学发光免疫传感器能通过电信号激发电极表面的发光物质与其共反应剂发生反应,以发光强度作为检测信号,以特异性纳米抗体Nb28作为识别元件,对OTA进行特异性检测。采用Ru(bpy)3 2+作为发光试剂,在三正丙胺(TPrA)溶液中检测ECL信号,利用比表面积大、稳定性高的Au/CaCO3固载发光试剂,大大增加了发光试剂的固载量,从而提高了传感器的灵敏度和稳定性,以OTA纳米抗体(Nb28)作为特异性识别元件,提高了传感器的特异性。
进一步的,本发明还提供了一种检测赭曲霉毒素A的方法,该方法以上述检测赭曲霉毒素A的修饰电极为工作电极,以铂电极为辅助电极,以甘汞电极作为参比电极,以共反应剂三正丙胺(TPrA)溶液作为检测溶液,通过循环伏安法和电化学发光法共同检测赭曲霉毒素A的含量。
进一步的,上述电化学发光法中,测量类型为强度方式,扫描电位为0.2 V~1.35V,扫描速率为0.1 V/s,放大级数为4,光电倍增管高压为600V。
进一步的,上述电化学发光法中,三正丙胺(TPrA)溶液的浓度为0.03-0.06 mmol/L。
进一步的,上述检测赭曲霉毒素A的方法包括以下步骤:
(1)配制不同浓度的赭曲霉毒素A标准溶液,备用;
(2)将上述制备的检测赭曲霉毒素A的修饰电极分别与上述不同浓度的赭曲霉毒素A标准溶液在37℃下孵育4h;
(3)将修饰电极取出,与辅助电极和参比电极搭配,以三正丙胺溶液作为检测溶液,检测电化学发光强度信号;
(4)以OTA浓度的对数为横坐标,以电化学发光强度信号的差值为纵坐标,绘制标准曲线;
(5)将检测赭曲霉毒素A的修饰电极与待检样品溶液在37℃下孵育4h,与辅助电极和参比电极搭配,以三正丙胺溶液作为检测溶液,检测电化学发光强度信号,得到电化学发光强度信号的差值,将该差值带入标准曲线,得到待检样品中OTA浓度。
本发明以废鸡蛋壳为模板合成的多孔道Au/CaCO3吸附发光试剂Ru(bpy)3 2+,以OTA纳米抗体Nb28为靶向分子,以三正丙胺(TPrA)作为共反应剂,构建高特异性、高灵敏度、宽检测范围的检测赭曲霉毒素A(OTA)的电化学发光传感器。与现有技术相比,本发明具有以下优势:
1、本发明使用的Au/CaCO3纳米材料以废弃蛋壳为模板制成,实现了废弃蛋壳的回收利用,为蛋壳综合利用成为有价值的功能材料提供了一种实用、低成本的方法。同时,利用多孔的比表面积大的Au/CaCO3纳米材料,为发光试剂及OTA纳米抗体提供了更多吸附和共价结合位点,大大提高了免疫传感器的灵敏度。
2、本发明首次采用OTA纳米抗体Nb28作为特异性识别元件,构建电化学发光免疫传感器,为纳米抗体在电化学发光技术领域的发展提供了参考。经验证,采用Nb28作为特异性识别元件,选用Ru(bpy)3 2+作为发光试剂,通过检测电化学发光信号对OTA进行定量分析,检测范围为0.01-100 ng/mL,检测限可低至5.7 pg/mL,具有检测限低、检测范围宽的优势。
3、本发明电化学发光免疫传感器能实现OTA的高特异性、高灵敏度检测,且能够用于复杂基质咖啡、谷物等实际样品的检测应用,样品不需复杂的处理过程即可用于检测,检测速度快,解决了传统方法中样品前处理复杂、无法同时快速检测大量样品的问题。
附图说明
图1:基于纳米抗体特异性检测赭曲霉毒素A的电化学发光免疫传感器的构建过程示意图;
图2:不同浓度OTA(0.01~100 ng/mL)的电化学发光曲线图(A)及电化学发光免疫传感器的ECL信号强度的差值与OTA浓度的对数的线性校准曲线(B)。
图3:ECL电化学发光免疫传感器的特异性实验结果图。
具体实施方式
下面通过具体实施例对本发明进行进一步说明,下述说明仅是示例性的,并不对其内容进行限制。如无特别说明,下述术语或者方法没有细述的,均为现有技术。
下述实施例中,OTA纳米抗体Nb28采用文献《Nanobody-based fluorescenceresonance energy transfer immunoassay for noncompetitive and simultaneousdetection of ochratoxin a and ochratoxin B》(Tang Z , Liu X , Wang Y , et al.Nanobody-based fluorescence resonance energy transfer immunoassay fornoncompetitive and simultaneous detection of ochratoxin a and ochratoxin B[J]. Environmental Pollution, 2019, 251(AUG.):238-245.)中记载的方法得到。
实施例1
(1)以废鸡蛋壳为模板的Au/CaCO3纳米颗粒的制备
将蛋壳洗净、晾干、研磨成蛋壳粉,取0.5 g蛋壳粉与5 mL HAuCl4溶液(10 mM)混合,将混合溶液在室温下连续搅拌12 h,使蛋壳粉完全吸收金离子。沉淀蛋壳粉,悬浮液静置1 h左右,然后除去上清液。将所得产物在60 ℃恒温烘箱中干燥1 h,最后加入管式炉中,以2 ℃/min的升温速率升至500 ℃,并在此温度下煅烧2 h。将煅烧后的蛋壳粉金纳米颗粒(定义为Au/CaCO3)在室温下保存备用。
(2)BSA/Nb28/Ru(bpy)3 2+/Au/CaCO3/Nafion/GCE修饰电极的构建
玻碳电极(GCE)修饰前,先用0.3 μm和0.05 μm氧化铝粉进行抛光,然后用无水乙醇和去离子水分别超声2 min,得到镜状表面,用氮气吹干。
将上述2 mg Au/CaCO3纳米颗粒分散在2.6 mL Nafion溶液(Nafion溶液的浓度为2.5wt %)中,振荡3 h,然后离心除去多余的Nafion溶液,用去离子水洗涤3次,将2 mg Au/CaCO3/Nafion纳米复合材料分散在1 mL去离子水中,得到Au/CaCO3/Nafion纳米复合材料悬浮液。
取5 μL Au/CaCO3/Nafion纳米复合材料悬浮液,滴在经过预处理的玻碳电极表面,在室温下干燥,得到Au/CaCO3/Nafion/GCE修饰电极。
然后,将Au/CaCO3/Nafion/GCE修饰电极浸入20 mM Ru(bpy)3 2+溶液中,室温下避光孵育1 h,电极取出后用去离子水轻轻冲洗多余的Ru(bpy)3 2+,在室温下干燥。
然后,将5 μL Nb28溶液(20 μg/mL)滴在Ru(bpy)3 2+/Au/CaCO3/Nafion/GCE修饰电极表面,37 ℃孵育4 h,然后用去离子水轻轻冲洗电极表面,去除未结合Nb28分子,即制得Nb28/Ru(bpy)3 2+/Au/CaCO3/Nafion/GCE修饰电极。在此过程中,Nb28的巯基通过Au-S键与Au/CaCO3的金纳米颗粒结合。
随后,修饰电极与5 μL质量分数为1%的BSA溶液室温孵育0.5 h以阻断非特异性结合位点,然后用去离子水轻轻冲洗,去除未结合的BSA,并在室温下干燥,即制得BSA/Nb28/Ru(bpy)3 2+/Au/CaCO3/Nafion/GCE修饰电极,在4 ℃保存。
(3)标准曲线与检测限的测定
配制浓度分别为0.01 ng/mL、0.1 ng/mL、1 ng/mL、10 ng/mL、100 ng/mL的OTA标准溶液,备用。
以BSA/Nb28/Ru(bpy)3 2+/Au/CaCO3/Nafion/GCE修饰电极为工作电极,该工作电极先分别与不同浓度的OTA标准溶液在37℃下孵育4h,形成OTA/BSA/Nb28/ Ru(bpy)3 2+/Au/CaCO3/Nafion/GCE修饰电极,然后该工作电极与铂电极(辅助电极)和饱和甘汞电极(参比电极)搭配构建三电极体系,以0.05 mM TPrA溶液作为共反应剂及检测溶液,构建ECL免疫传感器。
将工作电极、辅助电极和参比电极浸入TPrA检测溶液中,利用电化学发光法,扫描电位0.2V~1.35V,扫描速率0.1V/s,光电倍增管高压600V,放大级数4进行检测,得到电化学发光强度(ECL)信号。
工作电极与检测溶液的反应原理如下:
工作电极OTA/BSA/Nb28/Ru(bpy)3 2+/Au/CaCO3/Nafion/ GCE中,Ru(bpy)3 2+与共反应剂TPrA在600V高压下发生上述反应,产生ECL信号,Ru(bpy)3 2+/ Au/CaCO3/Nafion/ GCE修饰电极上分别孵育Nb28和BSA,蛋白质的阻碍作用会降低电子传递效率,从而降低ECL信号,当BSA/Nb28/Ru(bpy)3 2+/Au/CaCO3/ Nafion/ GCE修饰电极与OTA孵育后,抗原-抗体的特异性结合对电子传递的阻碍作用加强,使得ECL信号进一步降低,降低的ECL信号强度与OTA的浓度成正比。
在37℃条件下,利用ECL传感器检测不同浓度(0.01、0.1、1、10、100 ng/mL)的OTA,获得ECL信号。以BSA/Nb28/Ru(bpy)3 2+/Au/CaCO3/Nafion/GCE修饰电极的ECL信号值为空白值,以OTA/BSA/Nb28/Ru(bpy)3 2+/Au/CaCO3/Nafion/ GCE修饰电极的ECL信号值为检测值,计算空白值与检测值的差值(∆ECL),以OTA浓度的对数为横坐标,以该ECL差值为纵坐标,作图得到标准曲线(见图2)。
由标准曲线可知,ECL信号的差值与OTA浓度的对数成正比,其线性关系为∆ECL=2762.9 log COTA+10748(R2=0.9977)。
对空白值进行多次测定,计算空白值的相对标准偏差,根据公式:检测限=3×空白的标准偏差/标准曲线的斜率,计算得出该ECL传感器检测限为5.7 pg/mL。
(4)特异性的测定
分别配制浓度为100 ng/mL的OTB、OTC、AFB1、ZEN、DON标准溶液,备用。
在37℃条件下,将步骤(2)制备的BSA/Nb28/Ru(bpy)3 2+/Au/CaCO3/Nafion/GCE修饰电极分别与不同毒素的标准溶液在37℃下孵育4h,制得含有不同毒素的修饰电极。以上述修饰电极为工作电极,以铂电极作为辅助电极,以饱和甘汞电极作为参比电极,以0.05mM TPrA溶液作为共反应剂和检测溶液,构建ECL免疫传感器。
将工作电极、辅助电极和参比电极浸入TPrA检测溶液中,利用电化学发光法,扫描电位0.2V~1.35V,扫描速率0.1V/s,光电倍增管高压600V,放大级数4进行检测,得到电化学发光强度(ECL)信号。
在37℃条件下,利用ECL传感器检测含有100 ng/mL不同毒素的工作电极,获得ECL信号,作为检测值。以BSA/Nb28/Ru(bpy)3 2+/Au/CaCO3/Nafion/GCE修饰电极的ECL信号值为空白值,计算空白值与检测值的差值(∆ECL),以不同毒素为横坐标,以该ECL差值为纵坐标,作柱状图(见图3)。从图中可以看出,只有OTA具有明显的ECL信号降低,其他毒素没有明显的信号变化,结果表明,本发明传感器对OTA表现出优异的选择性。
实施例2
样品测试溶液的制备:将咖啡豆研磨成粉,取4 mg咖啡粉末溶于1 mL去离子水中,将咖啡粉悬浮液用超声波处理30 min,离心得到上清液。在上清液中加入不同浓度的OTA,使咖啡溶液中OTA的最终浓度分别为0.05 ng/mL、2 ng/mL和80 ng/mL,得到实际的样品测试溶液。
将实施例1步骤(2)制备的BSA/Nb28/Ru(bpy)3 2+/Au/CaCO3/Nafion/GCE修饰电极分别与含有不同浓度OTA的咖啡样品在37℃下孵育4h,然后将该修饰电极取出,以其为工作电极,与铂电极和饱和甘汞电极搭配构建ECL免疫传感器。
将上述工作电极、铂电极和饱和甘汞电极浸入0.05 mM TPrA检测溶液中,利用电化学发光法,扫描电位0.2V~1.35V,扫描速率0.1V/s,光电倍增管高压600V,放大级数4进行检测,得到电化学发光强度(ECL)信号,作为检测值,以BSA/Nb28/ Ru(bpy)3 2+/Au/CaCO3/Nafion/GCE修饰电极的ECL信号值为空白值,计算空白值与检测值的差值(∆ECL),带入实施例1的标准曲线得到OTA的检测浓度,并通过下式计算回收率。每个样品检测三次,计算其回收率、回收率的平均值和标准偏差。
。
相对标准偏差(RSD)=回收率的标准偏差/回收率的平均值×100%。
检测结果如下表1所示:
从上表结果可以看出,本发明方法具有较高的回收率,检测范围宽,可以满足使用要求。
序列表
<110> 海南大学
<120> 一种检测赭曲霉毒素A的电化学发光免疫传感器的制备和应用
<160> 1
<170> SIPOSequenceListing 1.0
<210> 1
<211> 381
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
cagttgcagc tcgtggagtc cgggggacaa ttggtgcaag ctgggggctc tctgagactc 60
tcctgtgcag cctctggaag caccgtcgga gtcaatgcca tggacatggg ctggtaccgc 120
caggctccag gaaaacagcg cgagttggtc gcagctatta tcaatggtgg cggtgataca 180
aatcttgcag actccgtgaa gggccgattc accatctcca gagacggtgc caagaggacg 240
ttgtatctgc aaatgaacag cctgaaacct gaggacacgg ccgtgtatta ctgttacgtc 300
cgctcggggg ttggtctcgt ctactggggc caggggaccc aggtcaccgt ctcctcagaa 360
cccaagacac caaaaccaca a 381