一种基于微光学器件的端到端光电检测系统及方法

文档序号:8547 发布日期:2021-09-17 浏览:30次 英文

一种基于微光学器件的端到端光电检测系统及方法

技术领域

本发明涉及光电检测相关

技术领域

,尤其是指一种基于微光学器件的端到端光电检测系统及方法。

背景技术

随着半导体处理器的计算能力的持续提高,近几年人们提出了各种计算成像方法来简化视觉传感器的结构和增加复杂的成像功能。其中一个方法是利用单个微光学器件(Micro Optics Element,MOE)来替换传统的由多个镜片组成的镜头,并结合相应的计算方法来重建2D或3D图像。微光学器件可以是编码光圈、衍射光学元件、菲涅尔镜、微透镜阵列和光学匀光片等。

如图6和图7展示了传统的基于镜头的成像和基于微光学器件的成像的区别。宏观上,微光学器件结构上简单,体积小、重量轻,可以大大简化视觉传感器的结构,并具有更好的稳定性(温度变化和振动冲击对器件的光学特性的影响更小)。需要指出的是,在理想的镜头成像视觉传感器里,目标物体上的一个点对应到视觉传感器上的一个点(光被折射聚焦);而在理想的微光学成像视觉传感器里,目标物体上的一个点对应到视觉传感器上的若干个点(光被散射或是衍射),因此微光学成像视觉传感器获取的原始图像人眼有时无法识别其具体内容。

用简化的模型来表述,镜头成像视觉传感器的光学传递函数(也称为点扩散函数)近似于一个一对一映射的Delta函数

而微光学成像视觉传感器的光学传递函数是一个一对多映射的复杂函数

实际成像系统光学传递函数通常不是公式1和2表述的离散函数,因此以上两个公式是近似的描述。

微光学成像视觉传感器上获取的图像可以表达为

其中z1和z2为目标物体的深度边界,C为系统常数,w(x,y,z)是目标物体上在(x,y,z)位置的表面特征(可以包括纹理/亮度和深度),g(x,y,z)是公式(2)中的光学传递函数,n(u,v)为视觉传感器像素(u,v)处的成像噪声,i(u,v)为视觉传感器像素(u,v)处获取的数值。

如果应用场景需要把视觉传感器获取的图像提供给人眼看或是使用基于传统图像的处理方法,我们可以将微光学视觉传感器获取的图像进行重建。重建的图像可以经过传统的机器视觉算法进行进一步图像分析和处理后获得所需的结果。

在物联网和智能制造的应用中,大部分时候视觉传感器获取的图像是直接给机器看(即由计算机进行图像的分析并决策)而不是给人看。因此我们也可以利用微光学器件对目标物体反射或发出的光学信息进行特定处理,并直接分析微光学视觉传感器获取的图像提取所需的信息,不再进行图像重建,实现从传感器直接提取图像分析结果的端到端光电检测系统。

发明内容

本发明是为了克服现有技术中需要通过图像重建才能获取图像分析结果的不足,提供了一种无需通过图像重建便能从视觉传感器直接提取图像分析结果的基于微光学器件的端到端光电检测系统及方法。

为了实现上述目的,本发明采用以下技术方案:

一种基于微光学器件的端到端光电检测方法,包括以下步骤:

步骤一,目标物体发出或反射出光学信息;

步骤二,微光学器件对光学信息进行初步的信号处理;

步骤三,视觉传感器采集经微光学器件初步处理的图像,并直接分析得到所需要的光电检测结果。

在理想的镜头成像视觉传感器里,目标物体上的一个点对应到视觉传感器上的一个点(光被折射聚焦);而在理想的微光学成像视觉传感器里,目标物体上的一个点对应到视觉传感器上的若干个点(光被散射和衍射),因此微光学视觉传感器获取的原始图像人眼无法识别其具体内容。如上所述,如果应用场景需要把视觉传感器获取的图像提供给人眼看或是使用基于传统图像的处理方法,需要将微光学视觉传感器获取的图像进行重建。先对微光学视觉传感器的数据进行图像重建再使用传统的图像视频处理方法的工作流程如图8所示。这样分两步独立进行数据处理方式的主要缺点是图像重建和下游图像和视频处理计算量大,如果重建的图像不需要经过人眼进行处理和判断,其中部分运算是不必要的。

如图1所示,本发明采用端到端的处理方法,具体的说,利用微光学器件对目标物体发出或反射的光学信息(起始端)进行一定的初步信号处理,视觉传感器采集的经过微光学器件处理的图像进行直接分析得到所需要的检测结果(结束端),在起始端和结束端之间不再有图像重建这一环节,使视觉传感器具备智能化的分析处理能力,同时减小光电检测的计算量,达到了无需通过图像重建便能从视觉传感器直接提取图像分析结果的目的。

作为优选,在步骤二中,为了让微光学器件实现更复杂的光学信号处理,微光学器件采用了如下设计:

步骤a,先使用传统方法提取图像特征,然后通过专家进行确认和筛选以得到理想的图像特征集;

步骤b,给定光学仿真模拟图像;

步骤c,微光学器件信号处理仿真模拟图像;

步骤d,然后通过视觉传感器对仿真模拟图像进行图像预处理,并通过LBP局部二值模式得到微光学器件图像特征集;

步骤e,微光学器件图像特征集与理想图像特征集之间的距离计算得到目标函数:

Obj(Feature set)=α*GeometricDistance+β*BrightnessDistance,其中Geometric Distance为微光学器件图像特征集与理想图像特征集里特征中心的XYZ几何距离,Brightness Distance为特征中心像素的值。

实现上述端到端光电检测的微光学器件可以通过最基本的反向傅里叶变换(IFFT,Inverse Fast Fourier Transform)实现。这一设计方法的优点是实现简单,但是所得到的微光学器件的光学信号处理能力相对有限,这样得到的微光学器件本质上是对目标物体发射或反射的光学信号进行了傅里叶变换。故本发明采用图2的闭环设计方法进行微光学器件的设计,使得微光学器件能够实现更复杂的光学信号处理,比如特定的特征提取。故通过光学仿真模拟与人工或专家样本标注结合,实现多种指标加权结合的目标函数,并通过优化这样的目标函数使得设计的微光学器件具备所需的光学信号处理能力。

作为优选,在步骤a中,提取图像特征的传统方法是二维图像的角点检测、边缘检测、LBP局部二值模式、MSER最大稳定外部区域、三维图像的角点检测和直线检测中的其中之一。由于这些特征提取方法的输出严重依赖于参数,对其输出采用人工或专家进行确认和筛选能够得到理想的图像特征集。

作为优选,所述视觉传感器内设有神经网络输入层、预处理子网络、检测和分类子网络、神经网络输出层,所述神经网络输入层依次通过预处理子网络、检测和分类子网络与神经网络输出层电连接。通过多层神经网络实现从微光学视觉传感器图像直接提取光电检测结果。

作为优选,所述视觉传感器分析获取所需光电检测结果的具体流程如下:步骤A,视觉传感器采集原始图像;

步骤B,采集的原始图像通过神经网络输入层输入,再通过预处理子网络进行处理,然后通过检测和分类子网络进行检测分析;

步骤C,光电检测分析结果通过神经网络输出层输出。

视觉传感器上获取的原始图像已经经过微光学器件的特定光学信息处理,对这样的图像可以进一步通过多层神经网络实现从视觉传感器图像直接提取光电检测结果。

本发明还提供了一种基于微光学器件的端到端光电检测系统,它包括PCB基板、支撑管和微光学器件,所述PCB基板上设有计算机片上系统和视觉传感器,所述视觉传感器通过PCB基板与计算机片上系统电连接,所述支撑管的一端与PCB基板固定连接,所述微光学器件安装于支撑管的另一端,所述视觉传感器位于支撑管内,所述微光学器件的顶部位于支撑管外,所述微光学器件的底部位于支撑管内且设有滤光层,所述滤光层与微光学器件固定连接。微光学器件对目标物体发出或反射的光学信息(起始端)进行一定的初步信号处理,并通过滤光层对特定波长进行选通或屏蔽,提取特定的图像特征,视觉传感器采集的经过微光学器件处理的图像在计算机片上系统的控制下直接分析得到所需要的检测结果(结束端),在起始端和结束端之间不再有图像重建这一环节,达到了无需通过图像重建便能从视觉传感器直接提取图像分析结果的目的。

作为优选,所述微光学器件的顶部设有光学保护屏,所述光学保护屏与微光学器件固定连接。光学保护屏有利于保护光学器件不受损。

作为优选,所述微光学器件包括玻璃基板,所述玻璃基板的一侧设有微光学层,所述玻璃基板通过微光学层与光学保护屏固定连接,所述滤光层与玻璃基板相对应的另一侧固定连接。更具体地,光学保护屏有利于保护位于玻璃基板表面的微光学层不受损伤;微光学层采用微光学结构便于对目标物体发出或反射的光学信息进行一定的初步信号处理。

作为优选,所述微光学层的一侧设有AR镀膜,所述微光学层通过AR镀膜与光学保护屏固定连接,所述微光学层相对应的另一侧与玻璃基板固定连接。AR镀膜有利于微光学器件表面具有较低的反射比。

本发明的有益效果是:使视觉传感器具备智能化的分析处理能力,同时减小光电检测的计算量,达到了无需通过图像重建便能从视觉传感器直接提取图像分析结果的目的;实现上述特定光学信号处理的微光学器件的设计方法,通过光学仿真模拟与人工或专家样本标注结合,实现多种指标加权结合的目标函数,并通过优化这样的目标函数使得设计的微光学器件具备所需的光学信号处理能力;通过多层神经网络实现从视觉传感器图像直接提取光电检测结果;有利于保护位于玻璃基板表面的微光学层不受损伤;有利于微光学器件表面具有较低的反射比。

附图说明

图1是本发明中微光学器件光电检测的流程图;

图2是微光学器件的闭环设计流程图;

图3是视觉传感器端到端图像分析和处理流程图;

图4是微光学器件光电检测的系统架构图;

图5是微光学器件的结构示意图;

图6是基于镜头成像的系统架构图;

图7是基于微光学器件成像的系统架构图;

图8是先对视觉传感器的数据进行图像重建再使用传统的图像视频处理方法的流程图。

图中:1.PCB基板,2.支撑管,3.微光学器件,4.计算机片上系统,5.视觉传感器,6.滤光层,7.光学保护屏,8.玻璃基板,9.微光学层,10.AR镀膜,11.镜头,12.神经网络输入层,13.预处理子网络,14.检测和分类子网络,15.神经网络输出层,16.目标物体。

具体实施方式

下面结合附图和具体实施方式对本发明做进一步的描述。

如图1所述的实施例中,一种基于微光学器件的端到端光电检测方法,包括以下步骤:

步骤一,目标物体16发出或反射出光学信息;

步骤二,微光学器件3对光学信息进行初步的信号处理;

步骤三,视觉传感器5采集经微光学器件3初步处理的图像,并直接分析得到所需要的光电检测结果。

如图2所示,在步骤二中,为了让微光学器件3实现更复杂的光学信号处理,微光学器件3采用了如下设计:

步骤a,先使用传统方法提取图像特征,然后通过专家进行确认和筛选以得到理想的图像特征集;

步骤b,给定光学仿真模拟图像;

步骤c,微光学器件3信号处理仿真模拟图像;

步骤d,然后通过视觉传感器5对仿真模拟图像进行图像预处理,并通过LBP局部二值模式得到微光学器件3图像特征集;

步骤e,微光学器件3图像特征集与理想图像特征集之间的距离计算得到目标函数:

Obj(Feature set)=α*GeometricDistance+β*BrightnessDistance,其中Geometric Distance为微光学器件3图像特征集与理想图像特征集里特征中心的XYZ几何距离,Brightness Distance为特征中心像素的值。

在步骤a中,提取图像特征的传统方法是二维图像的角点检测、边缘检测、LBP局部二值模式、MSER最大稳定外部区域、三维图像的角点检测和直线检测中的其中之一。

如图3所示,视觉传感器5内设有神经网络输入层12、预处理子网络13、检测和分类子网络14、神经网络输出层15,神经网络输入层12依次通过预处理子网络13、检测和分类子网络14与神经网络输出层15电连接。

如图3所示,视觉传感器5分析获取所需光电检测结果的具体流程如下

步骤A,视觉传感器5采集原始图像;

步骤B,采集的原始图像通过神经网络输入层12输入,再通过预处理子网络13进行处理,然后通过检测和分类子网络14进行检测分析;

步骤C,光电检测分析结果通过神经网络输出层15输出。

如图4所示,本发明还提供了一种基于微光学器件的端到端光电检测系统,包括PCB基板1、支撑管2和微光学器件3,PCB基板1上设有计算机片上系统4和视觉传感器5,视觉传感器5通过PCB基板1与计算机片上系统4电连接,支撑管2的一端与PCB基板1固定连接,微光学器件3安装于支撑管2的另一端,视觉传感器5位于支撑管2内,微光学器件3的顶部位于支撑管2外,微光学器件3的底部位于支撑管2内且设有滤光层6,滤光层6与微光学器件3固定连接。微光学器件3的顶部设有光学保护屏7,光学保护屏7与微光学器件3固定连接。

如图4和图5所示,微光学器件3包括玻璃基板8,玻璃基板8的一侧设有微光学层9,玻璃基板8通过微光学层9与光学保护屏7固定连接,滤光层6与玻璃基板8相对应的另一侧固定连接。

如图4和图5所示,微光学层9的一侧设有AR镀膜10,微光学层9通过AR镀膜10与光学保护屏7固定连接,微光学层9相对应的另一侧与玻璃基板8固定连接。

在理想的镜头成像视觉传感器5里,目标物体上的一个点对应到视觉传感器5上的一个点(光被折射聚焦);而在理想的微光学成像视觉传感器5里,目标物体上的一个点对应到视觉传感器5上的若干个点(光被散射和衍射),因此微光学视觉传感器5获取的原始图像人眼无法识别其具体内容。如上所述,如果应用场景需要把视觉传感器5获取的图像提供给人眼看或是使用基于传统图像的处理方法,需要将微光学视觉传感器5获取的图像进行重建。先对微光学视觉传感器5的数据进行图像重建再使用传统的图像视频处理方法的工作流程如图8所示。这样分两步独立进行数据处理方式的主要缺点是图像重建和下游图像和视频处理计算量大,如果重建的图像不需要经过人眼进行处理和判断,其中部分运算是不必要的。

如图1所示,本发明采用端到端的处理方法,具体的说,利用微光学器件3对目标物体发出或反射的光学信息(起始端)进行一定的初步信号处理,视觉传感器5采集的经过微光学器件3处理的图像进行直接分析得到所需要的检测结果(结束端),在起始端和结束端之间不再有图像重建这一环节,使视觉传感器5具备智能化的分析处理能力,同时减小光电检测的计算量,达到了无需通过图像重建便能从视觉传感器5直接提取图像分析结果的目的。

实现上述端到端光电检测的微光学器件3可以通过最基本的反向傅里叶变换(IFFT,Inverse Fast Fourier Transform)实现。这一设计方法的优点是实现简单,但是所得到的微光学器件3的光学信号处理能力相对有限,这样得到的微光学器件3本质上是对目标物体发射或反射的光学信号进行了傅里叶变换。故本发明采用如图2所示的设计方法进行微光学器件3的设计,使得微光学器件3能够实现更复杂的光学信号处理,比如特定的特征提取。故通过光学仿真模拟与人工或专家样本标注结合,实现多种指标加权结合的目标函数,并通过优化这样的目标函数使得设计的微光学器件3具备所需的光学信号处理能力。

如图3所示,视觉传感器5上获取的原始图像已经经过微光学器件3的特定光学信息处理,对这样的图像进一步通过神经网络输入层12输入,再通过预处理子网络13进行处理,然后通过检测和分类子网络14进行检测分析,最后光电检测分析结果通过神经网络输出层15输出,实现了从视觉传感器5图像直接提取光电检测结果。

完整详细技术资料下载
上一篇:石墨接头机器人自动装卡簧、装栓机
下一篇:基于相互全局上下文注意力机制的单样本目标检测方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!