汽轮发电机转子绕组匝间电磁脉振波特性检测装置及方法
技术领域
:本发明提供一种汽轮发电机转子绕组匝间电磁脉振波特性检测装置及方法,属于汽轮发电机转子绕组匝间检测
技术领域
。背景技术
:现有国内外对于隐极式大型汽轮发电机转子绕组状态检测,普遍采用集总参数检测,有直流电阻、绝缘电阻、交流阻抗、高频交流阻抗等;分布参数检测有开口变压器法、分布电压法、RSO单脉冲法、大线圈单个交流脉冲测试法等。对于绕组匝间状态的检测均比较粗糙,只能对转子绕组线圈有个大概的累积特性判断,从波形上绝大多数只能整体分析,最多对每个大线圈进行较细致的分析,无法针对性地对每一匝的电磁波特性进行更精准、全面、完整、直观的体现。现阶段没有针对每匝绕组的耦合电磁波特性相应理论及针对性的检测手段。无法做到有的放矢的精准波形数据分析。
发明内容
:本发明的目的是提供一种能填补上述检测缺陷的汽轮发电机转子绕组匝间电磁脉振波特性检测装置及方法,其可清晰、简单、直观地将正负极绕组每顺向或逆向对称对应匝的真实电磁特性一一对应地呈现出来。
为实现上述目的,本发明所述的一种汽轮发电机转子绕组匝间电磁脉振波特性检测装置,包括超大容量内阻信号源,所述超大容量内阻信号源与超高速时序控制电路连接,超高速时序控制电路通过寄生感性电源经正负极负载导波线与转子绕组正负极连接,转子绕组正负极通过运放电路与超高速采集电路连接。
优选的,所述超大容量内阻信号源与每匝绕组圆极化特性平均时间常数匹配,且能产生与转子绕组全程响应时间常数匹配的功率圆极化特性波的能量宽度;
所述寄生感性电源将正负两极的输入输出耦合圆极化波进行圆波导耦合交换;
所述正负极负载导波线将圆极化波并发耦合到转子正负极上;
所述运放电路将并发圆极化发射及接收的信号合并耦合放大;
所述超高速采集电路采集波形,采集的波形为圆极化双信号发射源、每匝处处感生极化源、双对称组合成的圆极化波导负载、信号源能量维持的时间常数组合作用的波形。
提供一种大型隐极式汽轮发电机转子绕组匝间分布式电磁脉振波特性检测方法,超大容量内阻信号源、超高速时序控制电路产生雪崩极化沿的高位突变电场,通过寄生感性电源产生的对称偏转180°圆极化电磁波,经正负极负载导波线,顺时针或逆时针耦合到转子正负极上,依次会有正极第一匝与负极第一匝互感产生第一个正弦波,时间顺延会有能量返回感性寄生电源,同时会有能量依次传导到第二匝;寄生感性电源及第二匝又开始圆极化反馈能量回馈;依次每匝互相逐级回馈、叠加;每耦合匝均表现出相同时间常数的正弦波。
优选的,在顺时针维持正极圆极化发送及负极偏转180°圆极化发送单向能量场时间同时大于转子绕组全长导波时间时,每匝对称绕组均呈现信号源及负载叠加的双重电磁脉振波特性波形,通过自感及互感作用,在时间上可同步叠加耦合出当前匝形成的圆极化波波形,表征的是由上而下正向变化的磁通;如当前匝正弦波完整,波长时间常数变化小,则说明当前对称匝电磁特性完好;如当前匝正弦波不完整,与前后叠加的正弦波波长大于标准时间常数,说明当前匝存在缺陷,存在变形、油污、槽楔松动或位移、早期匝间短路等健康隐患;
优选的,在逆时针反方向施加正极圆极化及负极偏转180°圆极化单向能量场,对称采集比较,利用旋转方向同相的两个圆极化波耦合当前匝形成的逆时针圆极化波波形,表征的是自下向上反向变化的磁通;可重复验证缺陷匝,判断出缺陷在正负极绕组的位置。
优选的,当转子每匝负载单位长度为发送圆极化波波长整数倍时,
被测转子负载为电介质材料(ur=1),可知电磁波的衰减常数和相位常数为:
其中αs为衰减常数;βs为相位常数;c为真空光速;f为生成的电磁波频率;ε0为自由空间介电常数即10-9/36πF/m;εr为每匝绕组相对介电常数,所述εr=ε′r-jε″r,ε′r为每匝绕组相对介电常数实部,ε″r为每匝绕组相对介电常数虚部;
转子绕组中圆极化波的波长为:
式中,λ0=c/f为圆极化波的自由空间波长;λs为转子绕组中圆极化波的平均波长;当单匝转子绕组周长为发射电磁波的波长1/2的整数倍时,即
式中n为正整数,可得传播系数T2:
所述传播系数可以真实地反映内阻感抗时间常数。
有益效果:
本发明可以准确测量发电机转子绕组每匝的健康状况,判断发电机转子绕组是否发生了故障、以及是否存在故障趋势,本发明可以将转子故障形式、故障位置,准确定位在转子绕组每一匝上,是大型隐极式汽轮发电机转子全寿命周期无损状态检测的重要手段,在转子制造、出厂检验、投运后每次大修均可提供准确、清晰的数据及关键证据。
附图说明
:图1是顺时针在时间上可并发耦合出当前匝形成的圆极化波波形图;
图2是顺时针在当前线圈每匝形成的圆极化波波形累加反馈的圆极化波图;
图3是信号源结构示意图;
图4是运放、滤波、采集、控制电路示意图;
图5是顺时针圆极化波示意图;
图6是顺时针偏转180°圆极化波示意图;
图7是逆时针圆极化波示意图;
图8是等效内阻感抗时间常数示意图;
图9是实施例2示意图;
图10是实施例2示意图;
图11是实施例3示意图;
图12是实施例4示意图;
图13是实施例5示意图;
图14是实施例6示意图;
图15是实施例2-实施例4所示全速650MW转子1#线圈与2、3、4、5、6、7、8#线圈示意图。
具体实施方式
:
实施例1
如图1-8所示,本发明所述的一种汽轮发电机转子绕组匝间电磁脉振波特性检测装置,包括超大容量内阻信号源,所述超大容量内阻信号源与超高速时序控制电路连接,超高速时序控制电路通过寄生感性电源经正负极负载导波线与转子绕组正负极连接,转子绕组正负极通过运放电路与超高速采集电路连接。
所述超大容量内阻信号源与每匝绕组圆极化特性平均时间常数匹配,且能产生与转子绕组全程响应时间常数匹配的功率圆极化特性波的能量宽度;
所述寄生感性电源将正负两极的输入输出耦合圆极化波进行圆波导耦合交换;
所述正负极负载导波线将圆极化波并发耦合到转子正负极上;
所述运放电路将并发圆极化发射及接收的信号合并耦合放大;
所述超高速采集电路采集波形,采集的波形为圆极化双信号发射源、每匝处处感生极化源、双对称组合成的圆极化波导负载、信号源能量维持的时间常数组合作用的波形。
提供一种大型隐极式汽轮发电机转子绕组匝间分布式电磁脉振波特性检测方法,超大容量内阻信号源、超高速时序控制电路产生雪崩极化沿的高位突变电场,通过寄生感性电源产生的对称偏转180°圆极化电磁波,经正负极负载导波线,顺时针或逆时针耦合到转子正负极上,依次会有正极第一匝与负极第一匝互感产生第一个正弦波,会有能量返回感性寄生电源,同时会有能量依次传导到第二匝;寄生感性电源及第二匝又开始圆极化反馈能量回馈;依次每匝互相逐级回馈、叠加;每耦合匝均表现出相同时间常数的正弦波。
在顺时针维持正极圆极化发送及负极偏转180°圆极化发送单向能量场时间同时大于转子绕组全长导波时间时,每匝对称绕组均呈现信号源及负载叠加的双重电磁脉振波特性波形,通过自感及互感作用,在时间上可同步叠加耦合出当前匝形成的圆极化波波形,表征的是由上而下正向变化的磁通;如当前匝正弦波完整,波长时间常数变化小,则说明当前对称匝电磁特性完好;如当前匝正弦波不完整,与前后叠加的正弦波波长大于标准时间常数,说明当前匝存在缺陷,存在变形、油污、槽楔松动或位移、早期匝间短路等健康隐患;
在逆时针反方向施加正极圆极化及负极偏转180°圆极化单向能量场,对称采集比较,利用旋转方向同相的两个圆极化波耦合当前匝形成的逆时针圆极化波波形,表征的是自下向上反向变化的磁通;可重复验证缺陷匝,判断出缺陷在正负极绕组的位置。
当转子每匝负载单位长度为发送圆极化波波长整数倍时,
被测转子负载为电介质材料(ur=1),可知电磁波的衰减常数和相位常数为:
其中αs为衰减常数;βs为相位常数;c为真空光速;f为生成的电磁波频率;ε0为自由空间介电常数即10-9/36πF/m;εr为每匝绕组相对介电常数,所述εr=ε′r-jε″r,ε′r为每匝绕组相对介电常数实部,ε″r为每匝绕组相对介电常数虚部;
转子绕组中圆极化波的波长为:
式中,λ0=c/f为圆极化波的自由空间波长;λs为转子绕组中圆极化波的平均波长;当单匝转子绕组周长为发射电磁波的波长1/2的整数倍时,即
式中n为正整数,可得传播系数T2:
所述传播系数可以真实地反映内阻感抗时间常数。
本发明利用同时间常数耦合圆极化电磁波在圆波导匹配的每匝负载线圈,同时具有瞬态脉振波信号源特性这一原理进行检测,由于在每匝形成的单向变化磁通作用的时间与圆极化波经过每匝的物理周长的时间具有高度相关性,会形成圆极化波在到达第二匝时,会有部分能量返回第一匝,同理第三匝会有部分能量返回第二匝,再返回第一匝,即始终保持第一匝的磁通总量保持不变,第二匝磁通总量亦保持不变,信号发射源持续保持圆极化波的极化方向不变,顺时针或逆时针,就可以同时使得正负极第一匝,第二匝,第三匝均保持体现本匝特征的总磁通量,依次,可得到共62匝(如650MW全速转子)的正向匝间特征波形。如图1 所示,逆时针圆极化波耦合,可得出反向匝间特征波形。
实施例2:
全速650MW转子1#线圈与2#线圈过桥线位置为图15中A及a处;
如图9所示,某1#全速650MW健康转子1-8#线圈全部62匝均清晰可见。1#线圈与2#线圈过桥线特征明显,转子每匝瞬态波特性健康。
如图10所示,某2#全速650MW健康转子1-8#线圈全部62匝均清晰可见。1#线圈与2#线圈过桥线特征明显,转子每匝瞬态波特性健康。
实施例3:
全速650MW转子1#线圈与2#线圈过桥线位置为图15中A及a处;
如图11所示,某2#全速650MW亚健康转子1-8#线圈全部62匝除1#线圈5、6匝合并为1个正弦波外,其余均清晰可见。1#线圈与2#线圈过桥线特征不明显,2#线圈1、2匝正弦波相对于上个周期振幅过大,判断存在油污,需要进行必要清除工作。
实施例4:
全速650MW转子1#线圈与2#线圈过桥线位置为图15中A及a处;
如图12所示,某2#全速650MW转子两次大修瞬态波特性比较。浅色为正常转子每匝波形,深色为进油污后每匝波形。
说明:1#线圈第1-3匝完全重合,1#线圈第4-5匝趋势呈现分离,1#线圈第6匝完全消失, 2#线圈第1匝存在相位差,2#线圈第2匝开始,直到8#线圈第8匝,均正常。可分析出1#线圈5、6匝及2#线圈1匝处存在油污,位置在1#线圈与2#线圈的过桥线处,事后检修处理结果验证测试完全正确。
实施例5:
如图13所示,某2#全速390H转子年度A修瞬态波特性结果。1-5#线圈正常,6#线圈存在绕组变形。
实施例6:
如图14所示,某2#全速390H转子年度A修瞬态波特性结果。1-5#,7-9#线圈正常,6#线圈存在绕组变形。
- 上一篇:石墨接头机器人自动装卡簧、装栓机
- 下一篇:谐振式双轴磁传感器及双轴磁传感器测试系统