基于深度神经网络的锂电池soh在线估算方法
技术领域
本发明涉及新能源汽车电池管理领域,具体是基于深度神经网络的锂电池SOH在线估算方法。
背景技术
汽车在人们的日常生活中已经成为不可或缺的代步工具,但随着汽车行业的蓬勃发展,随之而来的是石油资源的大量消耗、环境污染日益加剧等问题。面对资源紧缺、环境污染这样严峻的问题,新能源技术逐渐成为行业焦点。在国家政策的大力支持下,纯电动汽车的发展尤为迅速,然而电池作为纯电动汽车的核心部件仍有诸多技术问题亟待解决,诸如在电池健康状态(SOH)、电池荷电状态(SOC)等的精准估计上仍存在技术瓶颈。近年来,电动汽车保有量逐年递增,在未来将会有大量的退役锂离子电池需进行相应处理。为响应国家锂离子电池梯次利用的相关政策,使得锂离子电池从电动汽车退役后仍然能在其他方面发挥作用,则需实现对电池SOH值高精度估算。此外,对电池寿命的在线估算也可以及时发现电池所存在的安全隐患。故攻破SOH高精度估算技术壁垒的任务刻不容缓。
目前,对于锂电池SOH估算常用的方法大致分为以下三种:1.恒流放电法;2.基于模型的方法;3.基于数据驱动的方法。法1是在实验室条件下对电池进行满充满放以准确测算电池的实际容量,该法虽精度较高,但其成本高昂,因此通常采取基于模型或基于数据驱动的方式进行SOH估算,基于模型的方法虽然具有较高的可解释性,但其效果随模型选取的不同存在较大差异且估算精度较低。
发明内容
本发明的目的是提供基于深度神经网络的锂电池SOH在线估算方法,包括以下步骤:
1)建立基于深度神经网络的锂电池SOH估算模型。
所述基于深度神经网络的锂电池SOH估算模型包括输入层、若干隐藏层和输出层。
所述隐藏层的输出y如下所示:
式中,Wj表示第j-1层到第j层的权值矩阵。bj表示第j-1层到第j层的偏置向量。σj表示第j层的激活函数。
所述输出层的输出Y如下所示:
式中,上标~表示转置。
隐藏层的激活函数如下所示:
σj(x)=max(x,0) (3)
输出层的激活函数如下所示:
σh+1(x)=x (4)
2)对所述基于深度神经网络的锂电池SOH估算模型进行训练,得到锂电池SOH估算优化模型。
对所述基于深度神经网络的锂电池SOH估算模型进行训练的步骤包括:
2.1)获取T时段的近全充电过程的锂电池充电片段数据和对应的锂电池SOH,并分别写入训练集和验证集中。
2.2)将训练集输入到基于深度神经网络的锂电池SOH估算模型中,得到当前权值矩阵W和偏置向量b。
2.3)设定迭代参数θt={Wt,bt}。t为迭代次数。t初始值为0。
2.4)更新迭代次数t=t+1,并计算目标函数ft(θt-1)对迭代参数θt-1的梯度gt,即:
其中,目标函数f如下所示:
式中,MSE(Y,Y')表示均方误差损失函数。Y为实际值。Y'为估算值。n为训练样本个数。
2.5)分别计算梯度gt的一阶矩和二阶矩,即:
mt←β1·mt-1+(1-β1)·gt (8)
式中,mt为梯度一阶矩。vt为梯度二阶矩。为梯度的平方。β1为一阶矩衰减系数。β2为二阶矩衰减系数。
2.6)对梯度一阶矩mt和梯度二阶矩vt进行校正,得到:
式中,分别表示梯度一阶矩、梯度二阶矩的偏置校正。
2.7)更新迭代参数θt,并返回步骤2.2)。
其中,迭代参数θt更新如下:
式中,α为用以控制步幅的学习率。ε为常数。
2.8)判断当前迭代参数θt是否收敛,若是,则基于当前迭代参数θt建立锂电池SOH估算优化模型,并跳转至步骤2.9),否则进入步骤2.3)。
2.9)将验证集输入到锂电池SOH估算优化模型中,验证锂电池SOH估算优化模型的输出结果准确率是否大于准确率阈值Pmax,若是,则完成训练,否则,返回步骤2.1)。
判断当前迭代参数θt是否收敛的方法为:判断相邻两次迭代参数的差值Δθ=θt-θt-1≤Δθmax是否成立,若是,则收敛,反之,不收敛。Δθmax为差值阈值。
3)获取待评估锂电池的近全充电片段的数据,经预处理后输入到锂电池SOH估算优化模型中,完成锂电池SOH估算。
近全充电过程的锂电池充电片段数据X为锂电池从电量I1充电至电量I2的充电片段数据。(I2-I1)/Imax*100%大于比重阈值p。Imax为锂电池最大电量。
锂电池充电片段数据包括电池荷电状态、单体电压、总电流、温度、充电时长。
近全充电过程的锂电池充电片段数据为维度一致的标准化数据。
值得说明的是,本发明首先利用深度神经网络具有较强的非线q性拟合能力的特点,建立基于深度神经网络的锂电池SOH估算模型;随后,引入基于自适应学习率的改进训练方法对模型进行训练,以期求解出最优的权值矩阵和偏移向量值。通过该方法训练出数据驱动的SOH模型,可实现对锂电池SOH高精度估算。最后,再使用未参与训练的近全充电片段作为验证集,通过模型估算得到相应的SOH值,并与真值对比得到一系列误差,以验证模型的有效性。
本发明的技术效果是毋庸置疑的,本发明具有以下效果:
1)本发明提出了基于深度神经网络的SOH估算模型及训练方法,引入了基于自适应学习率的深度学习算法来对网络参数进行更新,避免了人为设置学习率可能出现的问题,为不同的参数设置不同的自适应学习率;采用了标准化的方式对数据进行了预处理;并引入了均方误差损失函数作为目标函数。
2)本发明提出了基于深度神经网络的SOH在线估算方法,通过随机抽样、标准化等数据预处理方式对输入输出数据进行处理,并通过训练得到最终的SOH估算模型,代入验证集输入,即可得到所对应的SOH值,实现锂电池SOH在线估算,且其估算精度较基于模型的方法提高约10%,满足车企实际应用所需达到的估算精度。
3)本发明具有较强的工业应用潜力。由于锂电池的SOH影响因素较多且机理较为复杂,故从机理角度估算SOH相对困难,因此考虑使用该方法,通过神经网络直接映射,无需考虑电池内部机理即可实现锂电池SOH高精度估算。
附图说明
图1为深度神经网络SOH估算模型结构图;
图2为验证集验证效果。
具体实施方式
下面结合实施例对本发明作进一步说明,但不应该理解为本发明上述主题范围仅限于下述实施例。在不脱离本发明上述技术思想的情况下,根据本领域普通技术知识和惯用手段,做出各种替换和变更,均应包括在本发明的保护范围内。
实施例1:
参见图1,基于深度神经网络的锂电池SOH在线估算方法,包括以下步骤:
1)建立基于深度神经网络的锂电池SOH估算模型。
所述基于深度神经网络的锂电池SOH估算模型包括输入层、若干隐藏层和输出层。
所述隐藏层的输出y如下所示:
式中,Wj表示第j-1层到第j层的权值矩阵。bj表示第j-1层到第j层的偏置向量。σj表示第j层的激活函数。
所述输出层的输出Y如下所示:
式中,上标~表示转置。
隐藏层的激活函数如下所示:
σj(x)=max(x,0) (3)
输出层的激活函数如下所示:
σh+1(x)=x (4)
2)对所述基于深度神经网络的锂电池SOH估算模型进行训练,得到锂电池SOH估算优化模型。
对所述基于深度神经网络的锂电池SOH估算模型进行训练的步骤包括:
2.1)获取T时段的近全充电过程的锂电池充电片段数据和对应的锂电池SOH,并分别写入训练集和验证集中。
2.2)将训练集输入到基于深度神经网络的锂电池SOH估算模型中,得到当前权值矩阵W和偏置向量b。
2.3)设定迭代参数θt={Wt,bt}。t为迭代次数。t初始值为0。
2.4)更新迭代次数t=t+1,并计算目标函数ft(θt-1)对迭代参数θt-1的梯度gt,即:
其中,目标函数f如下所示:
式中,MSE(Y,Y')表示均方误差损失函数。Y为实际值。Y'为估算值。n为
2.5)分别计算梯度gt的一阶矩和二阶矩,即:
mt←β1·mt-1+(1-β1)·gt (8)
式中,mt为梯度一阶矩。vt为梯度二阶矩。为梯度的平方。β1为一阶矩衰减系数。β2为二阶矩衰减系数。←表示以右边表达式更新左边符号。
2.6)对梯度一阶矩mt和梯度二阶矩vt进行校正,得到:
式中,分别表示梯度一阶矩、梯度二阶矩的偏置校正。
2.7)更新迭代参数θt,并返回步骤2.2)。
其中,迭代参数θt更新如下:
式中,α为用以控制步幅的学习率。ε为常数。
2.8)判断当前迭代参数θt是否收敛,若是,则基于当前迭代参数θt建立锂电池SOH估算优化模型,并跳转至步骤2.9),否则进入步骤2.3)。
2.9)将验证集输入到锂电池SOH估算优化模型中,验证锂电池SOH估算优化模型的输出结果准确率是否大于准确率阈值Pmax,若是,则完成训练,否则,返回步骤2.1)。
判断当前迭代参数θt是否收敛的方法为:判断相邻两次迭代参数的差值Δθ=θt-θt-1≤Δθmax是否成立,若是,则收敛,反之,不收敛。Δθmax为差值阈值。
3)获取待评估锂电池的近全充电过程的锂电池充电片段数据,并输入到锂电池SOH估算优化模型中,完成锂电池SOH(健康状态)估算。
近全充电过程的锂电池充电片段数据X为锂电池从电量I1充电至电量I2的充电片段数据。(I2-I1)/Imax*100%大于比重阈值p。本实施例中,p=80%。Imax为锂电池最大电量。
锂电池充电片段数据包括电池荷电状态、单体电压、总电流、温度、充电时长。
近全充电过程的锂电池充电片段数据为维度一致的标准化数据。
实施例2:
基于深度神经网络的锂电池SOH在线估算方法,包括以下步骤:
1)全充电片段样本获取:选取SOC值自10以下充至90以上的近全充电片段的数据作为样本输入X,特征包含SOC、单体电压、总电流、温度以及本次充电时长;相应全充电片段处的SOH值作为样本输出Y。
2)数据预处理:首先,采用随机采样的方法使所有全充电片段的数据行数统一,以确保输入维度一致;再将每一次全充电过程中的所有SOC、单体电压、总电流、温度及本次充电时长的数据转换为一行数据;随后对该数据进行标准化处理。
3)深度神经网络SOH估算模型训练:首先,将所有样本数据按一定比例随机划分为训练集和验证集;其次,构建出均方误差损失函数;最后,利用引入基于自适应学习率的参数更新方式(5)-(12)迭代求解出该模型的所有最优权值矩阵和偏置向量值θ。
4)在线SOH值求解:将③中划分出的验证样本输入到已训练完成的模型中,在线计算出每个全充电段所对应的SOH值。
5)指标统计:计算验证集输入经该模型计算后的输出与真值之间的平均相对误差、最大相对误差、平均绝对误差、最大绝对误差。
实施例3:
基于深度神经网络的锂电池SOH在线估算方法,包括以下步骤:
1)建立基于深度神经网络的锂电池SOH估算模型
本发明利用了深度神经网络对复杂非线性函数具有较强拟合能力的优点,搭建了基于深度神经网络的SOH估算模型,其模型结构详见图1。该模型将已进行相应预处理后的近全充电片段的电池数据X作为输入,经过模型运算后得到输出Y,即为电池SOH值。计算过程如下:
首先,将处理后的充电数据作为输入X,通过式(1)计算得到X经过两层隐藏层后的输出y,其次,将y作为输出层的输入经式(2)后得到输出层的输出Y,即锂电池在该时刻下的SOH值。
其中,W1、b1、W2、b2、W3、b3分别指的是输入层到第一层隐藏层的权值矩阵和偏置向量、第一层隐藏层到第二层隐藏层的权值矩阵和偏置向量以及第二层隐藏层到输出层的权值矩阵和偏置向量;σ1、σ2、σ3分别为两层隐藏层及输出层的激活函数。σ1、σ2的表达式见式(3),σ3的表达式见式(4)
σ1(x),σ2(x)=max(x,0) (3)
σ3(x)=x (4)
通过以上方法,完成对模型的搭建,随后利用改进的训练方法对上述模型进行训练,求得最佳的权值矩阵及偏置向量值。
2)深度神经网络锂电池SOH估算模型的训练方法
本发明采用了基于自适应学习率的改进训练算法adaptive moment estimation(Adam),该方法取代了传统的随机梯度下降方法,传统的随机梯度下降在训练过程中仅保持单一的学习率对权值矩阵进行更新,而Adam通过计算梯度的一阶矩和二阶矩,为不同的参数选择不同的自适应性的学习率,且其计算高效,对内存需求小。
故本发明采用该方法作为优化算法,具体实现步骤如下:
当参数θt不收敛时,则通过式(5)更新步数,随后由式(6)计算原目标函数f(θ)对参数θ的梯度。
t←t+1 (5)
其中t为更新的步数,初值为0,θt为要求解的参数,f(θ)为带有参数θ的目标函数,即使均方误差损失函数(7)最小,gt为目标函数f(θ)对θ求导所得的梯度。Y为真值,Y'为估算值。
求得梯度值后,再通过式(8)计算得到梯度的一阶矩,即过往梯度与当前梯度的平均值,使梯度能够平滑、稳定的过渡。此外,为了能够实现为不同参数设置不同的自适应学习率,则由式(9)引入梯度的二阶矩,即过往梯度平方与当前梯度平方的平均值。
mt←β1·mt-1+(1-β1)·gt (8)
其中mt为梯度一阶矩,初值为0,vt为梯度二阶矩,初值为0,为梯度的平方,β1为一阶矩衰减系数,默认为0.9,β2为二阶矩衰减系数,默认为0.999。
然而,由于初始值为0,故会向0偏置,因此需要利用式(10)、式(11)分别对梯度的一阶矩、二阶矩进行校正以减少该偏置的影响。
其中分别为一阶矩、二阶矩的偏置校正。
最后,使用式(12)对参数进行更新。迭代以上步骤,直至参数θt收敛。
其中α为用以控制步幅的学习率,默认为0.01,ε默认为10-8。
3)获取待评估锂电池的近全充电过程的锂电池充电片段数据,并输入到锂电池SOH估算优化模型中,完成锂电池SOH估算。
实施例4:
基于深度神经网络的锂电池SOH在线估算方法的验证实验,包括以下步骤:
1)样本获取
本实施例中所使用的电池数据来源于某车企公司。
首先,针对电池服役期间的数据编写相应算法截取出近乎全充电过程的充电片段数据,即SOC自10以下充至90以上的电池数据作为输入,具体特征包括:SOC、单体电压v、总电流i、温度T及本次充电时长t。随后,再通过安时积分法(1)-(3)求得该充电片段处的SOH值作为输出。
ocv→soc (2)
SOH=(S/(Δsoc·C0×0.01))×100 (3)
其中k为本次充电数据的行数;ik、tk分别表示在第k行时的电流和该电流所持续的时间,单位分别为安培(A)、小时(h);ocv为静置点处的单体电压值;Δsoc为充电后静置点(即充电结束半小时后第一个电流为0的点)处的soc与充电前静置点(即充电开始前第一个电流为0的点)处soc的差值,其中soc值由单体电压ocv通过ocv→soc曲线表对应得到;C0为电池的标称容量,单位为安时(A·h)。
2)数据预处理
首先,由于输入样本为单次全充电的全过程数据,每次充电的数据行数不一致,因此需要先通过随机采样的方法使得所有输入样本的数据行数相同,以确保输入维度一致,对所有全充电数据片段进行行数统计后,根据统计结果,确定将行数统一划归为300行;其次,再对数据结构进行变形,将二维的矩阵输入变为一维的向量输入;最后,再对输入数据进行标准化处理。
3)深度神经网络SOH估算模型训练
数据预处理后,搭建深度神经网络SOH估算模型,其中输入层50个神经元、第一层隐藏层100个神经元、第二层隐藏层100个神经元,输出层1个神经元。然后对所有样本输入和样本输出(共计2000组数据)按照4:1的比例随机划分训练集、验证集。划分完成后,对搭建好的模型进行训练,利用自适应学习率的参数更新方式迭代求解出模型的所有最优权值矩阵和偏置向量参数,完成模型的训练。
4)在线SOH值求解
将步骤3中划分出的验证集输入至步骤3中已训练好的模型中,通过模型计算,在线估算出SOH值。
5指标统计
计算出验证集的平均相对误差A、最大相对误差B、平均绝对误差C、最大绝对误差D,公式见(4)-(7),具体数值详见表1。验证集效果图见图2
其中yi为真值,为模型估算值。
表1各项指标展示
平均相对误差
最大相对误差
平均绝对误差
最大绝对误差
1.67%
8.89%
1.49
7.35
本发明公开了一种基于深度神经网络的锂电池SOH在线估算方法,引入了基于自适应学习率的深度学习算法对模型参数进行更新,从而实现SOH在线估算。最后,通过验证集测试了所得模型的有效性和正确性。所提方法无需考虑电池内部机理,可直接根据已训练好的神经网络映射出对应的SOH值,且速度快、精度较高。
- 上一篇:石墨接头机器人自动装卡簧、装栓机
- 下一篇:一种高功率锂离子蓄电池一致性筛选方法