多气缸发动机的气缸盖
技术领域
本公开涉及在内部形成有排气集合部的多气缸发动机的气缸盖。
背景技术
作为多气缸发动机的气缸盖,公知有通过使排气导管(排气通路)汇合而形成的集合排气导管被一体地设置在气缸盖内的气缸盖(专利文献1)。在该气缸盖中,为了进行良好的冷却,在排气导管的下方配置有下侧冷却液套,在排气导管的上方配置有上侧冷却液套。在排气通路中,与各气缸所具备的2个排气口连接的2个排气通路为了形成局部集合排气通路而汇合,与各气缸连通的多个局部集合排气通路为了在下游形成共同的集合排气通路而在集合部汇合。
在这样的使排气通路在气缸盖内集合的气缸盖结构中,一般而言,从燃烧室延伸的一对排气通路在与气缸轴线大致垂直的平面上集合成1个排气通路(局部集合排气通路)后,与所有气缸连通的局部集合排气通路集合于集合部。
另一方面,公知有这样的气缸盖:按每个气缸而设置的2个排气通路以从2个圆形截面变成2个纵长截面的方式在第一集合通路(局部集合通路)的上游部在气缸轴线方向上重叠(专利文献2)。该气缸盖的目的在于降低从排气口到集合部为止的通路截面的变化导致的通气阻力、以及降低由从排气通路流向集合部的排气气体的干涉引起的通气阻力等,第一集合通路的下游部形成为纵长截面。
现有技术文献
专利文献
专利文献1:日本特开2008-309158号公报
专利文献2:日本特开2018-200017号公报
发明内容
发明所要解决的课题
然而,在专利文献2所记载的气缸盖中,按每个气缸而设置的2个排气通路在气缸轴线方向上的重叠方向在3个气缸中是不同的。具体而言,在后侧2个气缸中,前侧的排气口以相对于后侧的排气口位于上方的方式重叠,而在前端的气缸中,后侧的排气口以相对于前侧的排气口位于上方的方式重叠。因此,在该气缸盖中,即使降低了从2个排气通路流向第一集合通路的排气气体的干涉造成的通气阻力,也不会降低因从第一集合通路流向第二集合通路的排气气体的干涉而导致的通气阻力。即,排气气体的压力损失大,排气气体不能顺畅地排出。
本发明鉴于这样的背景,其目的在于提供一种能够顺畅地排出排气气体且能够高效地冷却排气气体的气缸盖。
用于解决课题的手段
为了实现这样的目的,本发明的一种实施方式是一种多气缸发动机E的气缸盖3,其紧固于气缸体2的上部,在所述气缸体2上,多个气缸1被形成为一列,在所述气缸盖3与在所述气缸内滑动的活塞的顶面之间形成燃烧室6,所述气缸盖3具有:排气通路51,其按每个所述气缸而设置,从对应的所述燃烧室向与气缸列方向交叉的方向延伸;排气集合部52,其与多个所述排气通路共同连接;以及水套30,其形成为与所述排气通路和所述排气集合部相邻。所述排气通路各自包括:从与对应的所述燃烧室连通的一对排气口8a延伸出的一对排气通路上游部53;和与一对所述排气通路上游部共同连接的排气通路中游部54,一对所述排气通路上游部在高度方向上彼此不同的高位置和低位置处与对应的所述排气通路中游部连接。对于与所述排气集合部连通的全部所述排气通路上游部,所述高位置及所述低位置在所述气缸列方向上交替。
根据该结构,一对排气通路上游部在高度方向上彼此不同的高位置及低位置处与对应的排气通路中游部连接,因此在各排气通路中游部排气气体会产生回旋流。而且,对于与排气集合部连通的所有排气通路上游部,高位置及低位置在气缸列方向上交替,因此在各排气通路中游部产生的回旋流的方向相同。由此,从排气通路中游部流向排气集合部的排气气体不会相互干涉而顺畅地排出。另外,由于排气气体伴随着回旋流而在排气通路中游部以及排气集合部中流动,因此排气气体与气缸盖壁面的接触时间增加。即,即使不增加由气缸盖划定的排气通路、排气集合部的表面积,也能够增加这些通路的能够进行热交换的表观表面积。由此,排气气体被高效地冷却。
优选的是,全部的所述排气通路中游部的上游侧部分形成为相对于所述气缸列方向而向相同方向倾斜的截面形状。
根据该结构,能够可靠地使在排气通路中游部流动的排气气体产生相同方向的回旋流。
发明效果
这样,根据本发明,能够提供一种能够顺畅地排出排气气体且能够高效地冷却排气气体的气缸盖。
附图说明
图1是实施方式的发动机的主要部分的与气缸列方向垂直的方向的剖视图。
图2是从下方观察气缸盖的立体图。
图3是从上方观察气缸盖的水套的立体图。
图4是从下方观察气缸盖的水套的立体图。
图5是气缸盖的排气集合通路周围的主要部分剖视图。
图6是气缸盖的俯视图。
图7是气缸盖的排气集合通路的立体图。
图8是气缸盖的排气集合通路的俯视图。
图9是沿着图8中的IXA、IXB、IXC以及IXD线将排气集合通路与比较例一起示出的剖视图,左侧表示比较例,右侧表示本发明。
标号说明
1:气缸;
2:气缸体;
3:气缸盖;
6:燃烧室;
8:排气集合通路;
8a:排气口;
30:水套;
51:排气通路;
52:排气集合部(排气通路下游部);
53:排气通路上游部;
53A:第一通路(在高位置与排气通路中游部连接的排气通路上游部);
53B:第二通路(在低位置与排气通路中游部连接的排气通路上游部);
54:排气通路中游部;
E:发动机。
具体实施方式
以下,参照附图对本发明的实施方式进行详细说明。在本实施方式中,发明被应于汽车用内燃机(以下,简称为发动机E)。以下,以发动机E搭载于汽车的状态为基准,按照图1所示的上下方向进行说明。
如图1及图2所示,发动机E是SOHC型4阀式的直列4气缸汽油发动机。如图1所示,发动机E具备:气缸体2,在该气缸体2上,收纳活塞的4个气缸1被形成为一列;箱形的气缸盖3,其紧固于气缸体2的上部;以及盖罩4,其紧固于气缸盖3的上部。发动机E以将气缸盖3配置于铅直方向的上侧的姿态搭载于汽车。气缸体2和气缸盖3用铝合金铸造。
气缸1分别沿大致上下方向延伸,相互平行地形成于气缸体2。以下,将排列设置的多个气缸1的排列方向称为气缸列方向。各气缸1的上端在气缸体2的上端面2a开口,下端在形成于气缸体2的下部的曲轴室(未图示)开口。在气缸体2上的气缸1的侧部,以一体地包围各气缸1的侧周部的方式形成有气缸体内水套5(气缸体内冷却水通路)。气缸体内水套5以沿着各气缸1的侧周部的方式弯曲,气缸体内水套5的上端在气缸体2的上端面2a开口。气缸体内水套5为了供冷却水(冷却剂)流通而在气缸体2成型时通过砂型等形成为空腔。
在气缸盖3的与气缸体2接合的接合面(以下,称为对气缸体接合面3a)上的与各气缸1相对的部分,形成有作为曲面状的凹陷的燃烧室凹部3b。各燃烧室凹部3b与各气缸1的比活塞靠上方的部分一起划定出燃烧室6。即,气缸盖3划定出了燃烧室6的上边缘。
在气缸盖3的内部形成有4个进气通路7。各进气通路7的上游端使进气入口7a在气缸盖3的沿着气缸列方向的一个侧面(图1的左侧的侧面)上开口。各进气通路7的下游端为了使2个进气口7b在燃烧室凹部3b的壁面上开口而分支为两股。8个进气口7b在气缸列方向上排列配置。另外,在气缸盖3的内部形成有1个排气集合通路8。排气集合通路8的上游端各使2个排气口8a在各燃烧室凹部3b的壁面上开口。排气集合通路8的下游端使单一的排气出口8b在气缸盖3的沿着气缸列方向的另一侧面(图1的右侧的侧面)上开口。8个排气口8a在气缸列方向上排列配置。以下,以燃烧室凹部3b作为基准,将设有进气通路7的一侧称为进气侧,将设有排气集合通路8的一侧称为排气侧。
在气缸盖3上,对进气口7b进行开闭的进气门9以及对排气口8a进行开闭的排气门10分别沿气缸列方向排列且设置为滑动自如。在气缸盖3与盖罩4之间,由两者划定出气门传动室11,在气门传动室11中收纳有对进气门9以及排气门10进行开阀驱动的气门传动机构12。气门传动机构12构成为包括:能够旋转地安装于气缸盖3的凸轮轴13;配置于凸轮轴13的上方的摇臂轴14;被摇臂轴14支承为能够摆动的进气摇臂15以及排气摇臂16等。在凸轮轴13上,形成有针对每个气缸1而对一对进气门9以及排气门10进行驱动的4个气门传动凸轮13a。
如图2所示,排气出口8b形成于气缸盖3的排气侧侧面3c的长度方向的中间位置。另外,在燃烧室凹部3b的壁面上的4个进气通路7及排气集合通路8的中央,以贯通气缸盖3的上表面的方式形成有用于插入火花塞(未图示)的火花塞插入孔17。
如图1及图2所示,排气集合通路8形成为比气缸盖3的对气缸体接合面3a进一步向排气侧延伸。更具体而言,排气出口8b由在气缸盖3的排气侧侧面3c上突出的管状的排气出口管状部18划定,气缸盖3的排气出口管状部18及其附近构成了相对于气缸体2向侧方鼓出的鼓出部19。
排气出口管状部18的末端面构成未图示的增压器(涡轮增压器)的涡轮、废气净化装置等下游侧排气通路部件20的连接面18a。并且,在排气出口管状部18的末端,以包围排气出口8b的方式形成有多个(在图示例中为4个)用于用螺栓紧固下游侧排气通路部件20的紧固凸台21。另一方面,在鼓出部19的下表面,以从对气缸体接合面3a的周缘分别到达紧固凸台21的方式形成有2个肋22。这些肋22在相对于气缸列接近或远离的方向即前后方向上延伸,这些肋22呈从紧固凸台21朝向对气缸体接合面3a打开的锥形形状。
如前所述,在气缸体2及气缸盖3的前方配置有增压器或废气净化装置等下游侧排气通路部件20,在发动机E起动后,它们成为高温。因此,气缸盖3的相对于气缸体2向侧方鼓出的鼓出部19容易从增压器、废气净化装置通过热传导、辐射以及对流而被传递热,特别是其下表面容易成为高温。而且,当鼓出部19的下表面成为高温时,由于伴随热膨胀的变形,气缸盖3与下游侧排气通路部件20的密封性容易降低。在本实施方式中,在鼓出部19的下表面形成有在接近和远离气缸列的方向上延伸的肋22,由此抑制了鼓出部19的变形。
如图1及图3~图4所示,在气缸盖3的内部,为了抑制由来自燃烧室6内或排气集合通路8内的燃烧气体的热传播引起的温度上升,形成有气缸盖内水套(气缸盖内冷却水通路)。以下,将气缸盖内水套简称为水套30(31~36)。水套30也是为了供冷却水(冷却剂)流通而在气缸盖3的成型时通过砂型等形成为空腔。在图3和图4中,以透视气缸盖3的方式,实体地示出了作为空腔部分的水套30。
水套30具有主水套31、上排气侧水套32、下排气侧水套33等作为主要要素。主水套31在多个燃烧室凹部3b的上方与燃烧室凹部3b相邻地配置,在气缸盖3的气缸列方向(长度方向)上延伸。上排气侧水套32和下排气侧水套33以从上下夹着排气集合通路8的方式与排气集合通路8相邻地配置,上排气侧水套32和下排气侧水套33分别沿气缸盖3的长度方向延伸。上排气侧水套32和下排气侧水套33与主水套31相互连通。
图2中的虚线表示在气缸盖3紧固于气缸体2时气缸体内水套5的上端面向气缸盖3的对气缸体接合面3a的部分。在气缸体内水套5中,如空心箭头所示,供冷却水流通。在气缸列方向的一端,在气缸体内水套5的上端面向相对气缸体接合面3a的部分,形成有2个从相对气缸体接合面3a在气缸盖3内向上方延伸并与水套30连通的冷却水流入通路34。2个冷却水流入通路34分别与主水套31的气缸列方向的一端侧连通,供冷却水从气缸体内水套5流入。
另外,在气缸体内水套5的上端面对对气缸体接合面3a的虚线部分中的、比冷却水流入通路34靠气缸列方向的另一端侧的位置,在适当部位形成有从对气缸体接合面3a在气缸盖3内向上方延伸并与水套30连通的旁通通路35。旁通通路35与主水套31连通。各旁通通路35形成为流路截面积比冷却水流入通路34小。
如图3及图4所示,在上排气侧水套32中的气缸列方向的另一端(与设置有冷却水流入通路34的一侧不同的端部)形成有用于将冷却水从水套30排出的冷却水流出通路36。冷却水流出通路36的外端经由配管、软管等而与散热器(未图示)连通。在主水套31、上排气侧水套32以及下排气侧水套33中,如黑色箭头所示,冷却水在气缸列方向上流通。
如图5所示,上排气侧水套32和下排气侧水套33分别形成在形成鼓出部19的壁的内部。即,在图5所示的截面中,鼓出部19具有:划定上排气侧水套32及下排气侧水套33的轮廓的上下一对的上外壁41及下外壁42;以及划定排气集合部52的圆环状的内周壁43。在以形成空腔的方式相互分离地配置的上外壁41与内周壁43之间形成有上排气侧水套32,在以形成空腔的方式相互分离地配置的下外壁42与内周壁43之间形成有下排气侧水套33。另外,如图1所示,在上外壁41立起设置有气缸盖3的划定气门传动室11的侧壁23。
在图5的截面中,排气集合通路8(图5所示的下游部分)形成为大致直线状。即,在该截面中,划定排气集合通路8的内周壁43的内周面43i形成为大致平行的平面状。内周壁43的外表面43o从燃烧室6侧(图中的左方)朝向排气出口8b(朝向图中的右方)与内周面43i平行地呈直线状延伸至排气出口8b的近前。即,内周壁43在到达末端弯曲区域之前的直线状区域形成为大致固定的厚度。
另一方面,上外壁41的划定上排气侧水套32的内表面41i以在排气集合通路8侧具有曲率中心的方式弯曲,由此使上排气侧水套32扩大。另外,下外壁42的划定下排气侧水套33的内表面42i以在排气集合通路8侧具有曲率中心的方式弯曲,由此使下排气侧水套33扩大。
如图6~图8所示,排气集合通路8具有:针对每个气缸1而设置的4个排气通路51;和与4个排气通路51共同连接并使流过它们的排气气体汇合的排气集合部52。各排气通路51具有与对应的燃烧室6连通的2个排气通路上游部53(53A、53B);和与2个排气通路上游部53(53A、53B)共同连接的排气通路中游部54。排气集合部52构成与4个排气通路中游部54共同连接的排气通路下游部,在气缸盖3的另一侧面(图1的连接面18a)形成有单一的排气出口8b。所有的排气通路上游部53具有大致相同的截面积。所有排气通路中游部54具有排气通路上游部53的大约2倍的截面积。排气集合部52具有与排气通路中游部54同等的高度和比排气通路中游部54大的宽度及截面积,排气集合部52使宽度及截面积朝向下游逐渐减小。
图9中,将沿着图8中的IXA、IXB、IXC以及IXD线的排气集合通路8的剖视图作为A-A截面、B-B截面、C-C截面、D-D截面而与比较例一起示出,左侧表示比较例,右侧表示本发明。另外,在比较例中,对与本实施方式相同或同样的要素标注相同的标号。
关于比较例,与前述的专利文献1同样,是这样的结构:在与气缸轴线大致垂直的平面上,从燃烧室6延伸的一对排气通路上游部53集合到1个排气通路中游部54后,与所有气缸1连通的排气通路中游部54集合到排气集合部52。因此,在A-A截面中,8个排气通路上游部53配置在同一高度位置。另外,在B-B截面中,4个排气通路中游部54配置在同一高度位置,各排气通路中游部54呈大致左右对称的横向较长的形状。在4个排气通路中游部54汇合后的正下游的C-C截面中,与排气出口8b附近的D-D截面相比,排气集合部52呈具有较大的截面积的横向较长的形状,使截面积朝向下游逐渐减小。
另一方面,在本发明的排气集合通路8中,如图7所示,每个气缸1的2个排气通路上游部53在上下方向上彼此不同的位置(以下,称为高位置以及低位置)朝向排气出口8b弯曲,在高位置以及低位置向前方延伸并相互汇合。因此,在图9的A-A截面中,每个气缸1的2个排气通路上游部53在上下方向上相互错开的位置处与排气通路中游部54连接。以下,在每个气缸1的2个排气通路上游部53中,将在高位置弯曲且在高位置与排气通路中游部54连接的通路设为第一通路53A,将在低位置弯曲且在低位置与排气通路中游部54连接的通路设为第二通路53B。在全部4个气缸1中,第一通路53A配置于左侧,第二通路53B配置于右侧。即,第一通路53A和第二通路53B在气缸列方向上交替地配置,由此,对于与排气集合部52连通的全部8个排气通路上游部53,排气通路上游部53的高位置和低位置在气缸列方向上交替。换言之,涉及与排气集合部52连通的全部排气通路上游部53,排气通路上游部53的高度位置在气缸列方向上交替地成为高位置和低位置。
另外,每个气缸1的2个排气通路上游部53在上下方向上相互不同的高位置和低位置相互汇合。由此,在B-B截面中,全部排气通路中游部54的上游侧部分形成为右侧部分比左侧部分低且相对于气缸列方向向同一方向倾斜的截面形状。排气集合部52与比较例没有很大不同,排气集合部52在C-C截面中形成为具有比D-D截面大的截面积的横向较长的形状,且使截面积朝向下游逐渐减小。
由于这样一对排气通路上游部53在高度方向上相互不同的高位置和低位置与对应的排气通路中游部54连接,因此在各排气通路中游部54中在排气气体中产生回旋流。而且,对于与排气集合部52连通的全部排气通路上游部53,高位置以及低位置在气缸列方向上交替,因此在各排气通路中游部54处产生的回旋流的方向相同。由此,从排气通路中游部54流向排气集合部52的排气气体不会相互干涉而顺畅地排出。另外,由于排气气体伴随着回旋流而在排气通路中游部54及排气集合部52中流动,因此排气气体与气缸盖3壁面的接触时间增加。即,即使不增加由气缸盖3划定的排气通路51、排气集合部52的表面积,也能够增加排气集合通路8的能够进行热交换的表观表面积。由此,排气气体被高效地冷却。
另外,如图9的B-B截面所示,各排气通路中游部54的上游侧部分呈相对于气缸列方向而向相同方向倾斜的截面形状,因此在排气通路中游部54中流动的排气气体中可靠地产生同一方向的回旋流。
以上,结束具体的实施方式的说明,但本发明并不限定于上述实施方式,能够广泛地变形实施。例如,在上述实施方式中,作为一例,本发明应用于4气缸汽油发动机,但发明的应用对象只要是多气缸发动机即可,也可以是2气缸、3气缸、或5气缸以上的发动机E、或柴油发动机。另外,在上述实施方式中,在气缸盖3的侧面形成有单一的排气出口8b,但也可以在气缸盖3的内部形成多个排气集合部52(在4气缸以上的情况下按每2个以上的气缸设置),形成多个排气出口8b。此外,只要在不脱离本发明的主旨的范围内,能够适当地变更各部件、部位的具体结构、配置、数量、角度等。另一方面,上述实施方式所示的各构成要素并不一定全部是必需的,能够适当选择。
- 上一篇:石墨接头机器人自动装卡簧、装栓机
- 下一篇:一种气缸盖与一种燃气发动机