磁盘装置以及Depop处理方法
关联申请
本申请享受以日本专利申请2020-46735号(申请日:2020年3月17日)为在先申请的优先权。本申请通过参照该在先申请而包括在先申请的全部内容。
技术领域
本发明的实施方式涉及磁盘装置以及Depop处理方法。
背景技术
近年来,开发了具有实现高记录密度的技术的磁盘装置。作为实现高记录密度的磁盘装置,存在在盘的半径方向上对多个轨道进行重叠写的瓦记录型式(Shingled writeMagnetic Recording:SMR、或Shingled Write Recording:SWR)的磁盘装置。另外,也存在具有逻辑减少(Logical Depop)功能的瓦记录型式的磁盘装置,Logical Depop功能是指,将因劣化和/或故障等而无法使用的头设为禁止使用,变更盘的各扇区的物理地址和LBA(Logical block Address:逻辑地址)的对应关系。
发明内容
本发明的实施方式提供一种能够提高性能的磁盘装置以及Depop处理方法。
本实施方式的磁盘装置具备:多个盘,具有:第1区域,被赋予LBA,以能够随机写入数据的通常记录方式被写入数据;和第2区域,被赋予LBA,以在半径方向上重叠写入多个轨道的瓦记录方式被写入数据;多个头,对所述盘写入数据,从所述盘读出数据;以及控制器,向所述第1区域以所述通常记录方式写入数据,向所述第2区域以所述瓦记录方式写入数据,在将所述多个头内的第1头设为了禁止使用的情况下,与所述多个盘内的所述第1头所对应的第1记录面的第1记录容量相应地,变更所述第1区域。
附图说明
图1是表示第1实施方式的磁盘装置的构成的框图。
图2是表示第1实施方式的头相对于盘的配置的一例的示意图。
图3是表示通常记录处理的一例的示意图。
图4是表示瓦记录处理的一例的示意图。
图5是用于说明第1实施方式的Depop功能的一例的剖视图。
图6是表示第1实施方式的用户数据区域的一例的示意图。
图7是表示在执行了第1实施方式的Depop功能的情况下的用户数据区域UA的一例的示意图。
图8是表示在执行了第1实施方式的Depop功能的情况下的用户数据区域的一例的示意图。
图9是表示第1实施方式的用户数据区域的一例的图。
图10是表示第1实施方式的用户数据区域的一例的图。
图11是表示第1实施方式的用户数据区域的一例的图。
图12是表示本实施方式的Depop处理方法的一例的流程图。
图13是表示变形例1的用户数据区域的一例的图。
图14是表示变形例2的用户数据区域的一例的图。
图15是表示第2实施方式的存储区域的一例的图。
图16是表示在执行了第2实施方式的Depop功能的情况下的存储区域的一例的示意图。
图17是表示在执行了第2实施方式的Depop功能的情况下的存储区域的一例的示意图。
图18是表示第2实施方式的Depop处理方法的一例的流程图。
具体实施方式
以下,针对实施方式参照附图进行说明。此外,附图是一例,并不限定发明的范围。
(第1实施方式)
图1是表示第1实施方式的磁盘装置1的构成的框图。
磁盘装置1具备后述的头盘组件(HDA),驱动器IC20、头放大器集成电路(以下,头放大器IC或前置放大器)30、易失性存储器70、非易失性存储器80、缓冲存储器(缓冲)90、以及作为单芯片的集成电路的系统控制器130。另外,磁盘装置1与主机系统(以下,仅称为主机)100连接。
HAD具有:磁盘(以下,称为盘)DK、主轴马达(以下,称为SPM)12、搭载有头HD的臂13、以及音圈马达(以下,称为VCM)14。盘DK安装于SPM12,通过SPM12的驱动而旋转。臂13以及VCM14构成致动器16。臂13包含至少1个臂13。例如,臂13具有多个臂13。头HD包含至少1个头HD。例如,头HD具有多个头HD。致动器16通过VCM14的驱动,将搭载于臂13的头HD移动控制到盘DK的预定的位置。此外,致动器16也可以设置2个以上。
盘DK对能够写入其数据的区域分配有能够由用户利用的用户数据区域UA。此外,盘DK也可以被分配为将从主机等传送的数据(或命令)在向用户数据区域UA的预定的区域写入之前暂时保持的区域、和写入系统管理所需的信息的系统区域。以下,将从盘DK的内周向外周的方向、或从盘DK的外周向内周的方向称为半径方向。在半径方向上,将从内周向外周的方向称为外方向(外侧),将从外周向内周的方向称为内方向(内侧)。将与盘DK的半径方向垂直的方向称为圆周方向。圆周方向相当于沿着盘DK的圆周的方向。另外,也有时将盘DK的半径方向的预定的位置称为半径位置,将盘DK的圆周方向的预定的位置称为圆周位置。也有时将半径位置以及圆周位置汇总仅称为位置。
盘DK按半径方向的每个预定的范围被划分为多个区域(以下,也有时称为区或区区域)。区(zone)包含多个轨道。轨道包含多个扇区。此外,“轨道”以在盘DK的半径方向上划分而得到的多个区域内的1个区域、预定的半径位置上的头HD的路径、在盘DK的圆周方向上延长的数据、写入到预定的半径位置的轨道的1周的数据、写入到轨道的数据、写入到轨道的数据的一部分、或者其他各种含义使用。“扇区”以将轨道在圆周方向上划分而得到的多个区域内的1个区域、写入到盘DK的预定的位置的数据、写入到扇区的数据、或者其他各种含义使用。也有时将“轨道的半径方向的宽度”称为“轨道宽度”。也有时将“写轨道的半径方向的宽度”称为“写轨道宽度”,也有时将“读轨道的半径方向的宽度”称为“读轨道宽度”。也有时将“写轨道宽度”仅称为“轨道宽度”,将“读轨道宽度”仅称为“轨道宽度”,将“写轨道宽度以及读轨道宽度”汇总仅称为“轨道宽度”。将“通过预定的轨道的轨道宽度的中心位置的路径”称为“轨道中心”。也有时将“通过预定的写轨道的写轨道宽度的中心位置的路径”称为“写轨道中心”,将“通过读轨道的读轨道宽度的中心位置的路径”称为“读轨道中心”。也有时将“写轨道中心”仅称为“轨道中心”,将“读轨道中心”仅称为“轨道中心”,将“写轨道中心以及读轨道中心”汇总仅称为“轨道中心”。另外,也有时将在对轨道进行写入时作为目标的半径位置称为目标位置。目标位置例如能在盘DK的各轨道中配置为与盘DK同轴的圆状。例如,目标位置相当于轨道中心。
通常,在盘DK设定(或配置):对于与预定的轨道相邻的轨道(以下,也有时称为相邻轨道),以从该预定的轨道向半径方向隔开预定的间隔写入的通常记录(ConventionalMagnetic Recording:CMR)型式写入数据的区域(以下,也有时称为通常记录区域),和以与预定的轨道的半径方向的一部分重叠地写入接着要写入的轨道的瓦记录(Shingled WriteMagnetic Recording:SMR、或Shingled Write Recording:SWR)型式写入数据的区域(以下,也有时称为瓦记录区域)中的一方。在本实施方式中,在盘DK设定(或配置)通常记录区域和瓦记录区域。“相邻”这一用语包含数据、物体、区域以及空间等挨着排列自不必说,也有时以也包含隔开预定的间隔排列的含义使用。瓦记录区域的轨道密度(Track Per Inch:TPI)比没有进行重叠写的记录区域、例如,通常记录区域的轨道密度要高。瓦记录区域包含在半径方向上沿一方向被连续地重叠写入的至少1个轨道群(以下,也有时称为带或带区域)。在半径方向相邻的2个带区域,彼此隔开间隔(间隙)配置。以下,也有时将“以通常记录型式写入数据”仅称为“通常记录”或“通常记录处理”,将“以瓦记录型式写入数据”仅称为“瓦记录”或“瓦记录处理”。
头HD与盘DK相对向。例如,在盘DK的1个面与1个头HD相对向。头HD以滑块为本体,具备安装于该滑块的写头WHD和读头RHD。写头WHD向盘DK写入数据。读头RHD将写入到盘DK的数据读出。此外,也有时将“写头WHD”仅称为“头HD”,将“读头RHD”仅称为“头HD”,将“写头WHD以及读头RHD”汇总称为“头HD”。也有时将“头HD的中心部”称为“头HD”,将“写头WHD的中心部”称为“写头WHD”,将“读头RHD的中心部”称为“读头RHD”。也有时将“写头WHD的中心部”仅称为“头HD”,将“读头RHD的中心部”仅称为“头HD”。也有时将“将头HD的中心部定位于预定的轨道的轨道中心”这一情况表现为“将头HD定位于预定的轨道”、“将头HD配置于预定的轨道”、或“使头HD位于预定的轨道”等。
图2是表示本实施方式的头HD相对于盘DK的配置的一例的示意图。如图2所示,在圆周方向上,将盘DK的旋转的方向称为旋转方向。此外,在图2所示的例子中,旋转方向表示为逆时针,但也可以是相反方向(顺时针)。
在图2中,在盘DK的用户数据区域UA配置有通常记录区域CZ和瓦记录区域SMA。在图2中,通常记录区域CZ在瓦记录型式的磁盘装置1中,被允许在用户数据区域UA内随机写入数据,也即是,被允许通常记录。以下,在瓦记录型式的磁盘装置1中,也有时将允许在用户数据区域内随机写入数据、也即是允许通常记录的通常记录区域CZ称为传统区(Conventional Zone)CZ。传统区CZ被规定有作为瓦记录型式的磁盘装置1的命令标准的Zone-device ATA Comand(ZAC)以及Zone Block Command(ZBC)。传统区CZ能记录系统文件和/或元数据等频繁进行改写的数据。在图2所示的例子中,在半径方向上最内周侧配置有瓦记录区域SMA。传统区CZ在瓦记录区域SMA的外方向上相邻。
在图2所示的例子中,盘DK具有:盘DK1、盘DK2、…、盘DKN。盘DK1至DKN为同轴且在一方向上隔开间隔而重叠。盘DK1至DKN的直径相同。“相同”、“同一”、“一致”、以及“同等”等的用语包含完全相同这一含义自不必说,也包含以看作实质上相同的程度而不同这一含义。此外,盘DK1至DKN的直径也可以不同。盘DK1具有表面S0以及表面S0的相反侧的背面S1。表面S0具有用户数据区域UA0。用户数据区域UA0具有:瓦记录区域SMA0、和在瓦记录区域SMA0的外方向上相邻的传统区CZ0。背面S1具有用户数据区域UA1。用户数据区域UA1具有:瓦记录区域SMA1、和在瓦记录区域SMA1的外方向上相邻的传统区CZ1。以下,也有时将盘的表面以及背面称为记录面。
盘DK2具有:表面S2以及表面S2相反侧的背面S3。表面S2与背面S1相对向。表面S2具有用户数据区域UA2。用户数据区域UA2具有:瓦记录区域SMA2、和在瓦记录区域SMA2的外方向上相邻的传统区CZ2。背面S3具有用户数据区域UA3。用户数据区域UA3具有:瓦记录区域SMA3、和在瓦记录区域SMA3的外方向上相邻的传统区CZ3。
盘DKN具有:表面S(N-1)以及表面S(N-1)相反侧的背面SN。表面S(N-1)具有用户数据区域UA(N-1)。用户数据区域UA(N-1)具有:瓦记录区域SMA(N-1)、和在瓦记录区域SMA(N-1)的外方向上相邻的传统区CZ(N-1)。背面SN具有用户数据区域UAN。用户数据区域UAN具有:瓦记录区域SMAN、和在瓦记录区域SMAN的外方向上相邻的传统区CZN。
在图2中,头HD具有:头HD0、头HD1、头HD2、头HD3、…、头HD(N-1),以及头HDN。头HD0与表面S0相对向。头HD0向表面S0写入数据,从表面S0读出数据。头HD1与背面S1相对向。头HD1向背面S1写入数据,从背面S1读出数据。头HD2与表面S2相对向。头HD2向表面S2写入数据,从表面S2读出数据。头HD3与背面S3相对向。头HD3向背面S3写入数据,从背面S3读出数据。头HD(N-1)与表面S(N-1)相对向。头HD(N-1)向表面S(N-1)写入数据,从背面S(N-1)读出数据。头HDN与背面SN相对向。头HDN向背面SN写入数据,从背面SN读出数据。
在图2中,能够利用头HD向盘DK的记录面写入的数据的记录容量的合计(以下,也有时仅称为合计容量)是:能够利用头HD0向盘DK1的表面S0写入的数据的记录容量、能够利用头HD1向盘DK1的背面S1写入的数据的记录容量、能够利用头HD2向盘DK2的表面S2写入的数据的记录容量、能够利用头HD3向盘DK2的背面S3写入的数据的记录容量、…、能够利用头HD(N-1)向盘DKN的表面S(N-1)写入的数据的记录容量、以及、能够利用头HDN向盘DKN的背面SN写入的数据记录容量的合计。此外,合计容量例如也可以是能够向搭载于磁盘1的全部盘DK1至DKN写入的数据的记录容量的合计,也可以是能够向多个盘DK1至DKN内的几个盘的记录面写入的数据的记录容量的合计,也可以是能够向多个盘DK1至DKN内的1个盘的1个记录面写入的数据的记录容量。以下,也有时将“能够利用与预定的盘DK的预定的记录面对应的头HD向该记录面的预定的区域写入的数据的记录容量”仅称为“记录容量”。
在图2中,能够利用头HD向用户数据区域UA写入的数据的记录容量(用户数据区域UA的记录容量)的合计(以下,也有时称为合计用户数据容量)是:能够利用头HD0向表面S0的用户数据区域UA0写入的数据的记录容量(用户数据区域UA0的记录容量),能够利用头HD1向背面S1的用户数据区域UA1写入的数据的记录容量(用户数据区域UA1的记录容量),能够利用头HD2向表面S2的用户数据区域UA2写入的数据的记录容量(用户数据区域UA2的记录容量),能够利用头HD3向背面S3的用户数据区域UA3写入的数据的记录容量(用户数据区域UA3的记录容量),…、能够利用头HD(N-1)向表面S(N-1)的用户数据区域UA(N-1)写入的数据的记录容量(用户数据区域UA(N-1)的记录容量),以及、能够利用头HDN向背面SN的用户数据区域UAN写入的数据的记录容量(用户数据区域UAN的记录容量)的合计。此外,合计用户数据容量也可以是能够向搭载于磁盘装置1的全部盘DK1至DKN的全部记录面的用户数据区域UA写入的数据的记录容量的合计,也可以是能够向多个盘DK1至DKN内的几个盘的几个记录面的用户数据区域UA写入的数据的记录容量的合计,也可以是能够向多个盘DK1至DKN内的1个盘的1个记录面的用户数据区域UA写入的数据的记录容量。
在图2中,能够利用头HD向瓦记录区域SMA写入的数据的记录容量(瓦记录区域SMA的记录容量)的合计(以下,也有时称为合计瓦记录容量)是:能够利用头HD0向表面S0的瓦记录区域SMA0写入的数据的记录容量(瓦记录区域SMA0的记录容量),能够利用头HD1向背面S1的瓦记录区域SMA1写入的数据的记录容量(瓦记录区域SMA1的记录容量),能够利用头HD2向表面S2的瓦记录区域SMA2写入的数据的记录容量(瓦记录区域SMA2的记录容量),能够利用头HD3向背面S3的瓦记录区域SMA3写入的数据的记录容量(瓦记录区域SMA3的记录容量),…、能够利用头HD(N-1)向表面S(N-1)的瓦记录区域SMA(N-1)写入的数据的记录容量(瓦记录区域SMA(N-1)的记录容量),以及、能够利用头HDN向背面SN的瓦记录区域SMN写入的数据的记录容量(瓦记录区域SMAN的记录容量)的合计。此外,合计瓦记录容量也可以是能够向搭载于磁盘装置1的全部盘DK1至DKN的全部记录面的瓦记录区域SMA写入的数据的记录容量的合计,也可以是能够向多个盘DK1至DKN内的几个盘的几个记录面的瓦记录区域SMA写入的数据的记录容量的合计,也可以是能够向多个盘DK1至DKN内的1个盘的1个记录面的瓦记录区域SMA写入的数据的记录容量。
在图2中,能够利用头HD向传统区CZ写入的数据的记录容量(传统区CZ的记录容量)传统区的合计(以下,也有时称为合计传统区容量)是:能够利用头HD0向表面S0的传统区CZ0写入的数据的记录容量(传统区CZ0的记录容量),能够利用头HD1向背面S1的传统区CZ1写入的数据的记录容量(传统区CZ1的记录容量),能够利用头HD2向表面S2的传统区CZ2写入的数据的记录容量(传统区CZ2的记录容量),能够利用头HD3向背面S3的传统区CZ3写入的数据的记录容量(传统区CZ3的记录容量),…、能够利用头HD(N-1)向表面S(N-1)的传统区CZ(N-1)写入的数据的记录容量(传统区CZ(N-1)的记录容量),以及、能够利用头HDN向背面SN的传统区CZN写入的数据的记录容量(传统区CZN的记录容量)的合计。此外,合计传统区容量也可以是能够向搭载于磁盘装置1的全部盘DK1至DKN的全部记录面的传统区CZ写入的数据的记录容量的合计,也可以是能够向多个盘DK1至DKN内的几个盘的记录面的传统区CZ写入的数据的记录容量的合计,能够向多个盘DK1至DKN内的1个盘的1个记录面的传统区CZ写入的数据的记录容量的合计。
驱动器IC20按照系统控制器130(详细而言,后述的MPU60)的控制,控制SPM12以及VCM14的驱动。
头放大器IC(前置放大器)30具备读放大器以及写驱动器等。读放大器对从盘DK读出的读信号进行放大,向系统控制器130(详细而言,后述的读/写(R/W)通道50)输出。写驱动器将与从R/W通道50输出的信号相应的写电流向头HD输出。
易失性存储器70是若切断电力供给则保存着的数据会丢失的半导体存储器。易失性存储器70存储磁盘装置1的各部的处理所需的数据等。易失性存储器70例如是DRAM(Dynamic Random Access Memory:动态随机存取存储器)或SDRAM(Synchronous DynamicRandom Access Memory:同步动态存储器)。
非易失性存储器80是即使电力供给被切断也会记录所保存着的数据的半导体存储器。非易失性存储器80例如是否R型或NAND型的闪存ROM(Flash Read Only Memory:FROM)。
缓冲存储器90是暂时记录在磁盘装置1与主机100之间收发的数据等的半导体存储器。此外,缓冲存储器90也可以与易失性存储器70一体构成。缓冲存储器90例如是DRAM、SRAM(Static Random Access Memory:静态随机存取存储器),SDRAM、FeRAM(Ferroelectric Random Access memory:铁电随机存取存储器),或MRAM(Magnetoresistive Random Access Memory:磁阻式随机存取存储器)等。
系统控制器(控制器)130例如使用多个元件集成于单一芯片而成的被称为System-on-a-Chip(SoC:片上系统)的大规模集成电路(LSI)而实现。系统控制器130包含硬盘控制器(HDC)40、读/写(R/W)通道50、微处理器或微处理单元(MPU)60。HDC40、R/W通道50、以及MPU60分别彼此电连接。系统控制器130例如与驱动器IC20、头放大器IC30、易失性存储器70、非易失性存储器80、缓冲存储器90、以及主机系统100等电连接。
HDC40根据来自后述的MPU60的指示,控制主机100与R/W通道50之间的数据传送。HDC40例如与易失性存储器70、非易失性存储器80、以及缓冲存储器90等电连接。
R/W通道50根据来自MPU60的指示,执行读出数据以及写入数据的信号处理。R/W通道50具有对写入数据进行调制的电路或功能。另外,R/W通道50具有测定读出数据的信号质量的电路或功能。R/W通道50例如与头放大器IC30等电连接。
MPU60是控制磁盘装置1的各部的主控制器。MPU60经由驱动器IC20控制VCM14,执行头HD的定位。MPU60控制向盘DK的数据的写动作、并且选择从主机100传送的写入数据的保存目的地。另外,MPU60控制从盘DK的数据的读动作,并且控制从盘DK传送至主机100的读出数据的处理。另外,MPU60对记录数据的区域进行管理。MPU60与磁盘装置1的各部连接。MPU60例如与驱动器IC20、HDC40、以及R/W通道50等电连接。
MPU60具备:读/写控制部610、头/LBA(Logical block Address:逻辑区块地址)管理部620、以及记录区域管理部630。MPU60在固件上执行各部、例如,读/写控制部610、头/LBA管理部620、以及记录区域管理部630等的处理。此外,MPU60也可以具备各部、例如,读/写控制部610、头/LBA管理部620、以及记录区域管理部630等来作为电路。
读/写控制部610按照来自主机100的命令等,控制数据的读处理以及写处理。读/写控制部610经由驱动器IC20控制VCM14,将头HD配置在盘DK上的预定的半径位置,执行读处理或写处理。以下,也有时将“写处理”以及“读处理”表现为“访问”或“访问处理”这一用语。
读/写控制部610按照来自主机100的命令等,执行通常记录。读/写控制部610按照来自主机100的命令等,在盘DK的用户数据区域UA的传统区CZ上对系统文件和/或元数据等数据进行通常记录。读/写控制部610例如,在传统区CZ上随机以及顺序(sequential)地对数据进行通常记录。读/写控制部610例如在用户数据区域UA的传统区CZ中,以预定的轨道间距(以下,也有时称为通常记录轨道间距)对多个轨道进行瓦记录。
读/写控制部610按照来自主机100的命令等,执行瓦记录。读/写控制部610按照来自主机100的命令等,在盘DK的用户数据区域UA的瓦记录区域SMA中对数据进行瓦记录。读/写控制部610例如在瓦记录区域SMA中按每个带区域顺序地对数据进行瓦记录。读/写控制部610例如在用户数据区域UA的瓦记录区域SMA中,以预定的轨道间距(以下,也有时称为瓦记录轨道间距)对多个轨道进行瓦记录。瓦记录轨道间距WTP例如比通常记录轨道间距CTP要小。
图3是表示通常记录处理的一例的示意图。如图3所示,在半径方向上,将顺序对数据进行写以及读的方向称为顺方向。在图3中,顺方向是内方向。此外,顺方向也可以是外方向。如图3所示,在圆周方向上,也有时将头HD相对于盘DK前进的方向、也即是,读/写的方向称为行进方向。在图3所示的例子中,行进方向是前方向。此外,行进方向也可以是后方向。图3示出了轨道CTR0、轨道CTR1、轨道CTR2、…、轨道CTRn-2、轨道CTRn-1、以及轨道CTRn。在图3中,轨道CTR0至CTRn从外方向向内方向按记载的顺序排列。
图3示出了:轨道宽度TRW的轨道CTR0的轨道中心CTC0、轨道宽度TRW的轨道CTR1的轨道中心CTC1、轨道宽度TRW的轨道CTR2的轨道中心CTC2、…、轨道宽度TRW的轨道CTRn-2的轨道中心CTCn-2、轨道宽度TRW的轨道CTRn-1的轨道中心CTCn-1、以及轨道宽度TRW的轨道CTRn的轨道中心CTCn。此外,轨道CTR0至CTRn的轨道宽度也可以不同。
在图3所示的例子中,轨道CTR0至CTRn分别在半径方向上以通常记录轨道间距CTP配置。例如,轨道CTR0的轨道中心CTC0和轨道CTR1的轨道中心CTC1在半径方向上以通常记录轨道间距CTP分离,轨道CTR1的轨道中心CTC1和轨道CTR2的轨道中心CTC2在半径方向上以通常记录轨道间距CTP分离。另外,例如,轨道CTRn-2的轨道中心CTCn-2和轨道CTRn-1的轨道中心CTCn-1在半径方向上以通常记录轨道间距CTP分离,轨道CTRn-1的轨道中心CTCn-1和轨道CTRn的轨道中心CTCn在半径方向上以通常记录轨道间距CTP分离。此外,轨道CTR0至CTRn也可以分别在半径方向上以不同的轨道间距(通常记录轨道间距)配置。
另外,在图3所示的例子中,轨道CTR0至CTRn分别在半径方向上隔开间隙CGP配置。例如,轨道CTR0以及轨道CTR1在半径方向上以间隙CGP分离,轨道CTR1以及轨道CTR2在半径方向上以间隙CGP分离。另外,轨道CTRn-2以及轨道CTRn-1在半径方向上以间隙CGP分离,轨道CTRn-1以及轨道CTRn在半径方向上以间隙CGP分离。此外,轨道CTR0至CTRn也可以分别隔开不同的间隙配置。
在图3中,为了方便说明,将各轨道示出为以预定的轨道宽度在圆周方向上延伸的长方形状,但实际上沿着圆周方向弯曲。另外,各轨道也可以是一边在半径方向上变动一边在圆周方向上延伸的波状。
在图3所示的例子中,读/写控制部610在用户数据区域UA的通常记录区域中,在轨道中心CTC0定位头HD而对轨道CTR0进行通常记录。读/写控制部610在用户数据区域UA的通常记录区域中,在从轨道CTR0的轨道中心CTC0起向内方向以通常记录轨道间距CTP分离的轨道中心CTC1定位头HD对轨道CTR1进行通常记录。读/写控制部610在用户数据区域UA的通常记录区域中,在从轨道CTR1的轨道中心CTC1起向内方向以通常记录轨道间距CTP分离的轨道中心CTC2定位头HD对轨道CTR2进行通常记录。
在图3所示的例子中,读/写控制部610在用户数据区域UA的通常记录区域中,在从轨道CTRn-2的轨道中心CTCn-2起向内方向以通常记录轨道间距CTP分离的轨道中心CTCn-1定位头HD对轨道CTRn-1进行通常记录。读/写控制部610在用户数据区域UA的通常记录中,在从轨道CTRn-1的轨道中心CTCn-1起向内方向以通常记录轨道间距CTP分离的轨道中心CTCn定位头HD对轨道CTRn进行通常记录。
在图3所示的例子中,读/写控制部610也可以在用户数据区域UA的通常记录区域中,将轨道CTR0、CTR1、CTR2、…、CTRn-2、CTRn-1、以及CTRn按顺序进行通常记录,也可以对轨道CTR0、CTR1、CTR2、…、CTRn-2、CTRn-1、以及CTRn的各自的预定的扇区进行随机地通常记录。
图4是表示瓦记录处理的一例的示意图。图4示出了用户数据区域UA的预定的带区域BA。在图4所示的例子中,带区域BA包含:轨道STR0、STR1、STR2、…、STRn-1、以及STRn。在图4中,轨道STR0至STRn从外方向向内方向按记载的顺序排列。在图4中,轨道STR0至STRn在顺方向上重叠写入。
在图4中,在多个轨道STR0至STRn中,也有时将利用写头WHD写入到盘DK的轨道STR0称为写轨道WT0,将利用写头WHD写入到盘DK的轨道STR1称为写轨道WT1,将利用写头WHD写入到盘DK的轨道STR2称为写轨道WT2,将利用写头WHD写入到盘DK的轨道STRn-1称为写轨道WTn-1,将利用写头WHD写入到盘DK的轨道STRn称为写轨道WTn。
图4示出了:写轨道宽度WTW的写轨道WT0(轨道STR0)的轨道中心STC0、写轨道宽度WTW的写轨道WT1(轨道STR1)的轨道中心STC1、写轨道宽度WTW的写轨道WT2(轨道STR2)的轨道中心STC2、…、写轨道宽度WTW的写轨道WTn-1(轨道STRn-1)的轨道中心STCn-1、写轨道宽度WTW的写轨道WTn(轨道STRn)的轨道中心STCn。此外,写轨道WT0至WTn的写轨道宽度也可以不同。
在图4所示的例子中,写轨道WT0(轨道STR0)至WTn(STRn)分别在半径方向上以瓦记录轨道间距WTP配置。例如,写轨道WT0的轨道中心STC0与写轨道WT1的轨道中心STC1在半径方向上以瓦记录轨道间距WTP分离。例如,写轨道WT1的轨道中心STC1与写轨道WT2的轨道中心STC2在半径方向上以瓦记录轨道间距WTP分离。另外,例如,写轨道WTn-1的轨道中心STCn-1与写轨道WTn的轨道中心STCn在半径方向上以瓦记录轨道间距WTP分离。此外,写轨道WT0(轨道STR0)至写轨道WTn(轨道STRn)也可以分别在半径方向上以不同的轨道间距(瓦记录轨道间距)配置。
另外,写轨道WT0(轨道STR0)至写轨道WTn(轨道STRn)在顺方向上被重叠写入。将写轨道WT1重叠区域以外的剩余的写轨道WT0的区域称为读轨道RT0(轨道STR0),将写轨道WT2重叠区域以外的剩余的写轨道WT1的区域称为读轨道RT1(轨道STR1),将写轨道WTn重叠区域以外的剩余的写轨道WTn-1的区域称为读轨道RTn-1(轨道STRn-1)。另外,也有时将在带区域BA中沿顺方向顺序写入的情况下最后写入、没有与其他写轨道重叠的写轨道(以下,也有时称为最终轨道)WTn称为读轨道WTn(最终轨道)。图4示出了读轨道RT0至RTn-1的读轨道宽度RTW1。在图4中,读轨道RTn的读轨道宽度RTW2与写轨道WTn的写轨道宽度WTW相同。读轨道宽度RTW1比写轨道宽度WTW小。此外,读轨道RT0至RTn-1的读轨道宽度也可以不同。
在图4中,为了便于说明,将各轨道示出为以预定的轨道宽度在圆周方向上延伸的长方形状,但实际上沿着圆周方向弯曲。另外,各轨道也可以是一边在半径方向上变动一边在圆周方向上延伸的波状。
在图4所示的例子中,读/写控制部610在用户数据区域UA的预定的带区域BA中,对写轨道WT0、写轨道WT1、写轨道WT2、…、写轨道WTWn-1、以及写轨道WTWn按记载的顺序向顺方向顺序进行瓦记录。换言之,读/写控制部610在用户数据区域UA的预定的带区域BA中,对轨道STR0(写轨道WT0),轨道STR1(写轨道WT1),轨道STR2(写轨道WT2),…轨道STRn-1(写轨道WTn-1),以及轨道STRn(写轨道WTn)按记载的顺序在顺方向上重叠写入。
在图4所示的例子中,读/写控制部610在用户数据区域UA的预定的带区域BA中,在从写轨道WT0(轨道STR0)的轨道中心STC0起向顺方向以轨道间距WTP分离的轨道中心STC1定位头HD而在写轨道WT0对写轨道WT1进行瓦记录。读/写控制部610在用户数据区域UA的预定的带区域BA中,在从写轨道WT1的轨道中心STC1起向顺方向以轨道间距WTP分离的轨道中心STC2定位头HD而在写轨道WT1对写轨道WT2进行瓦记录。读/写控制部610在用户数据区域UA的预定的带区域BA中,在从写轨道WTn-1的轨道中心STCn-1起向顺方向以轨道间距WTP分离的轨道中心STCn定位头HD而在写轨道WTn-1对写轨道(最终轨道)WTn进行瓦记录。
头/LBA管理部620管理头HD以及LBA。头/LAB管理部620向主机100发送头HD的信息,按照主机100的命令等,将劣化了的或者因故障等而无法使用的头(以下,也有时称为不良头)HD设定为禁止使用。头/LAB管理部620通过将不良头HD设定为禁止使用,将设定为禁止使用的不良头HD所对应的盘DK的记录面(以下,也有时称为无效记录面)设定为不可使用。以下,也有时将“将头HD设定为禁止使用”这一情况称为“删除头HD”。另外,也有时将“将盘DK的记录面(无效记录面)设定为不可使用”这一情况称为“删除盘DK的记录面(无效记录面)”。头/LAB管理部620在将预定的盘DK的记录面(无效记录面)设定为不可使用的情况下,将使用预定的盘DK的无效记录面以外的头HD能够进行读/写处理的盘DK的记录面(以下,也有时称为有效记录面)的用户数据区域UA的各扇区的物理地址(头或者柱面编号、头编号、以及扇区编号等)与逻辑地址、例如,与LBA的对应关系进行变更。因此,头/LAB管理部620在将预定的盘DK的记录面(无效记录面)设定为不可使用的情况下,变更磁盘装置1中的最大的LBA(以下,也有时仅称为最大LAB)。如前所述,也有时将“按照主机100的命令等将不良头HD设为禁止使用,变更不良头HD所对应的无效记录面以外的有效记录面的各扇区的物理地址与LBA的对应关系的功能”称为“逻辑减少(Logical Depop)功能”。也有时将“LogicalDepop功能”仅称为“Depop功能”或“Depop”。Logical Depop功能是按预定的标准规定的功能。
图5是用于说明本实施方式的Depop功能的一例的剖视图。图5例如对应于图2。在图5中,LBA例如从外侧向内侧变大。此外,LBA也可以从内侧向外侧变大。图5示出了半径位置RP0、位于半径位置RP0的外方向的半径位置RP1、位于半径位置RP1的外方向的半径位置RP2。在图5中,用户数据区域UA0至UAN相当于从半径位置RP0(或半径位置RP0所对应的柱面)到半径位置RP2(或半径位置RP2所对应的柱面)为止的半径方向的范围(以下,也有时称为半径范围)UAR。用户数据区域UA0至UAN的半径范围UAR例如也可以相同。用户数据区域UA0至UAN的半径方向的距离(以下,也有时称为半径距离)相同。因此,用户数据区域UA0至UAN的面积相同。例如,用户数据区域UA0至UAN的记录容量相同。此外,用户数据区域UA0至UAN的半径范围也可以分别不同。另外,用户数据区域UA0至UAN的记录容量也可以分别不同。在图5中,瓦记录区域SMA0至SMAN相当于从半径位置RP0到半径位置RP1为止的半径范围SRR1。换言之,瓦记录区域SMA0至SMAN的半径范围SRR1相同。瓦记录区域SMA至SMAN的半径距离相同。因此,瓦记录区域SMA0至SMAN的面积相同。例如,瓦记录区域SMA0至SMAN的记录容量相同。此外,瓦记录区域SMA0至SMAN的半径范围也可以分别不同。另外,瓦记录区域SMA0至SMAN的记录容量也可以分别不同。在图5中,传统区CZ0至CZN相当于从半径位置RP1到半径位置RP2为止的半径范围。换言之,传统区CZ0至CZN的半径范围CRR1相同。传统区CZ0至CZN的半径距离相同。因此,传统区CZ0至CZN的面积相同。例如,传统区CZ0至CZN的记录容量相同。此外,传统区CZ0至CZN的半径范围也可以分别不同。另外,传统区CZ0至CZN的记录容量也可以分别不同。在图5中,半径范围SRR1比半径范围CRR1大。在图5中,用户数据区域UA0至UAN的半径范围UAR相当于瓦记录区域SMA0至SMAN的半径范围SRR1与传统区CZ0至CZN的半径范围CRR1之和。
在图5所示的例子中,头/LBA管理部620在利用Depop功能将不良头HD2设为了禁止使用的情况下,将盘DK2的无效记录面S2设定为不可使用。头/LBA管理部620在将无效记录面S2设定为不可使用的情况下,变更无效记录面S2以外的有效记录面S0、S1、S3至SN的用户数据区域UA0、UA1、UA3至UAN的各扇区的物理地址与LBA的对应关系。此外,在图5中,对利用Depop功能将头HD2设为禁止使用的例子进行了说明,但是在利用Depop功能将头HD0、HD1、HD3至HDN各自设为禁止使用的情况下,头/LBA管理部620也能执行与利用Depop功能将头HD2设为禁止使用的情况下同样的处理。
记录区域管理部630管理盘DK的记录区域(以下,也有时仅称为盘DK)。记录区域管理部630在盘DK的记录面设定通常记录以及瓦记录区域。记录区域管理部630在头/LBA管理部620利用Depop功能将预定的头HD设为了禁止使用的情况下,变更(调整、设定、或扩张)至少1个盘DK的记录面的传统区CZ。例如,记录区域管理部630在头/LBA管理部620利用Depop功能将预定的头HD设为了禁止使用的情况下,将至少1个盘DK的记录面的传统区以外的其他区域变更(或设定)为传统区CZ。
记录区域管理部630在头/LBA管理部620利用Depop功能将预定的头HD设为了禁止使用的情况下,在至少1个盘DK的用户数据区域UA中,将瓦记录区域SMA的一部分变更(或设定)为传统区CZ。换言之,记录区域管理部630在头/LBA管理部620利用Depop功能将预定的头HD设为了禁止使用的情况下,在至少1个盘DK的用户数据区域UA中,将瓦记录区域SMA的记录容量的一部分变更(或设定)为传统区CZ的记录容量。
记录区域管理部630,与头/LBA管理部620利用Depop功能设定为了禁止使用的不良头HD所对应的盘DK的无效记录面的传统区CZ的记录容量(或面积)相应地,在至少1个有效记录面的用户数据区域UA中,将瓦记录区域SMA的一部分变更(或设定)为传统区CZ。换言之,记录区域管理部630在头/LBA管理部620利用Depop功能将预定的不良头HD设为了禁止使用的情况下,在至少1个有效记录面的用户数据区域UA中,将瓦记录区域SMA的一部分变更(或设定)为传统区CZ,以使得将头HD设为禁止使用之前的合计传统区容量与将头HD设为了禁止使用之后的合计传统区容量一致。
例如,记录区域管理部630根据头/LBA管理部620利用Depop功能设为了禁止使用的不良头HD所对应的盘DK的无效记录面的传统区CZ的记录容量(或面积),将多个有效记录面的用户数据区域UA所分别对应的多个瓦记录区域SMA的一部分变更为所述多个瓦记录区域SMA所分别对应的多个传统区CZ。此外,记录区域管理部630也可以根据不良头HD所对应的盘DK的无效记录面的传统区CZ的记录容量(或面积),将多个有效记录面的用户数据区域UA所分别对应的多个瓦记录区域SMA的一部分均匀地变更为所述多个瓦记录区域SMA所分别对应的传统区CZ。另外,记录区域管理部630也可以根据不良头HD所对应的盘DK的无效记录面的传统区CZ的记录容量(或面积),将多个有效记录面的用户数据区域UA所分别对应的多个瓦记录区域SMA的一部分不均匀地变更为所述多个瓦记录区域SMA所分别对应的多个传统区CZ。
例如,记录区域管理部630将头/LBA管理部620利用Depop功能设为了禁止使用的不良头HD所对应的盘DK的无效记录面的传统区CZ的记录容量(或面积)所对应的、多个有效记录面的瓦记录区域SMA的一部分变更为多个传统区CZ。此外,记录区域管理部630也可以将头/LBA管理部620利用Depop功能设为了禁止使用的不良头HD所对应的盘DK的无效记录面的传统区CZ的记录容量(或面积)所对应的、多个有效记录面的瓦记录区域SMA的一部分均匀地变更为多个传统区CZ。记录区域管理部630也可以将头/LBA管理部620利用Depop功能设为了禁止使用的不良头HD所对应的盘DK的无效记录面的传统区CZ的记录容量(或面积)所对应的多个有效记录面的瓦记录区域SMA的一部分不均匀地变更为多个传统区CZ。
例如,记录区域管理部630根据头/LBA管理部620利用Depop功能设为了禁止使用的不良头HD所对应的盘DK的无效记录面的传统区CZ的记录容量,将多个有效记录面的用户数据区域UA内的1个用户数据区域UA所对应的瓦记录区域SMA的一部分变更为该瓦记录区域SMA所对应的传统区CZ。
记录区域管理部630根据头/LBA管理部620利用Depop功能设为了禁止使用的不良头HD所对应的盘DK的无效记录面的传统区CZ的记录容量,在至少1个有效记录面的用户数据区域UA中,将瓦记录区域SMA的记录容量的一部分分配给传统区CZ的记录容量。换言之,记录区域管理部630在头/LBA管理部620利用Depop功能将预定的头HD设为了禁止使用的情况下,在至少1个有效记录面的用户数据区域UA中,将瓦记录区域SMA的记录容量的一部分分配给传统区CZ的记录容量,以使得将头HD设为禁止使用之前的合计传统区容量与将头HD设为了禁止使用之后的合计传统区容量一致。
例如,记录区域管理部630,与头/LBA管理部620利用Depop功能设为了禁止使用的不良头HD所对应的盘DK的无效记录面的传统区CZ的记录容量(或面积)相应地,将多个有效记录面的用户数据区域UA所分别对应的多个瓦记录区域SMA的记录容量内的相同容量分配给所述多个瓦记录区域所分别对应的传统区的记录容量。此外,记录区域管理部630也可以根据不良头HD所对应的盘DK的无效记录面的传统区CZ的记录容量(或面积),将多个有效记录面的用户数据区域UA所分别对应的多个瓦记录区域SMA的记录容量的一部分均匀地分配给所述多个瓦记录区域SMA所分别对应的传统区CZ的记录容量。另外,记录区域管理部630也可以根据不良头HD所对应的盘DK的无效记录面的传统区CZ的记录容量(或面积),将多个有效记录面的用户数据区域UA所分别对应的多个瓦记录区域SMA的记录容量的一部分不均匀地分配给所述多个瓦记录区域SMA所分别对应的传统区CZ的记录容量。
例如,记录区域管理部630根据头/LBA管理部620利用Depop功能设为了禁止使用的不良头HD所对应的盘DK的无效记录面的传统区CZ的记录容量(或面积),将多个有效记录面的用户数据区域UA内的1个用户数据区域UA所对应的瓦记录区域SMA的记录容量分配给该瓦记录区域SMA所对应的传统区的记录容量。
在记录区域管理部630将有效记录面的用户数据区域UA的瓦记录区域SMA的一部分变更为了传统区CZ的情况下,读/写控制部610在从该用户数据区域UA的瓦记录区域SMA变更为了传统区CZ的区域中,以与对通过瓦记录重叠写的多个轨道进行写入时的多个目标位置内的相邻轨道不重叠的方式在能够写入轨道的多个目标位置定位头HD而写入数据(通常记录)。换言之,记录区域管理部630在将有效记录面的用户数据区域UA的瓦记录区域SMA的一部分变更为了传统区CZ的情况下,读/写控制部610在从该用户数据区域UA的瓦记录区域SMA变更为了传统区CZ的区域中,通过以瓦记录轨道间距的整数倍的轨道间距对轨道进行写入来执行通常记录。以下,也有时将“变更了记录型式的区域”称为“变更区域”。变更区域例如与无效记录面的传统区CZ的记录容量(或面积)相应地,相当于变更为了传统区CZ的瓦记录区域SMA的一部分。
例如,记录区域管理部630在将有效记录面的用户数据区域UA的瓦记录区域SMA的一部分变更为了传统区CZ的情况下,读/写控制部610在从该用户数据区域UA的瓦记录区域SMA变更为了传统区CZ的变更区域中,对利用瓦记录进行了写入的情况下的多个轨道隔开1个轨道地写入由此执行通常记录。换言之,记录区域管理部630在将有效记录面的用户数据区域UA的瓦记录区域SMA的一部分变更为了传统区CZ的情况下,读/写控制部610在从该用户数据区域UA的瓦记录区域SMA变更为了传统区CZ的变更区域中,通过以瓦记录轨道间距的2倍以上的轨道间距进行写入从而执行通常记录。
此外,也可以在记录区域管理部630将有效记录面的用户数据区域UA的瓦记录区域SMA的一部分变更为了传统区CZ的情况下,读/写控制部610在从该用户数据区域UA的瓦记录区域SMA变更为了传统区Cz的变更区域中,对利用瓦记录进行了写入的情况下的多个轨道隔开2个以上的轨道进行写入由此执行通常记录。
图6是表示本实施方式的用户数据区域UA的一例的示意图。图6对应于图2以及图5。
在图6所示的例子中,记录区域管理部630对盘DK1的记录面S0的用户数据区域UA0设定:半径范围SRR1的瓦记录区域SMA0、和位于瓦记录区域SMA0的外方向的半径范围CRR1的传统区CZ0。记录区域管理部630对盘DK1的记录面S1的用户数据区域UA1设定:半径范围SRR1的瓦记录区域SMA1、和位于瓦记录区域SMA1的外方向的半径范围CRR1的传统区CZ1。记录区域管理部630对盘DK2的记录面S2的用户数据区域UA2设定:半径范围SRR1的瓦记录区域SMA2、和位于瓦记录区域SMA2的外方向的半径范围CRR1的传统区CZ2。记录区域管理部630对盘DK2的记录面S3的用户数据区域UA3设定:半径范围SRR1的瓦记录区域SMA3、和位于瓦记录区域SMA3的外方向的半径范围CRR1的传统区CZ3。记录区域管理部630对盘DKN的记录面S(N-1)的用户数据区域UA(N-1)设定:半径范围SSR1的瓦记录区域SMA(N-1),和位于瓦记录区域SMA(N-1)的外方向的半径范围CRR1的传统区CZ(N-1)。记录区域管理部630对盘DKN的记录面SN的用户数据区域UAN设定:半径范围SRR1的瓦记录区域SMAN、和位于瓦记录区域SMAN的外方向的半径范围CRR1的传统区CZN。
图7是表示执行了本实施方式的Depop功能的情况下的用户数据区域UA的一例的示意图。图7对应于图5以及图6。在图7中,利用Depop功能将头HD2设定为禁止使用。也就是说,在图7中,头HD2不执行向记录面S2的用户数据区域UA2的读/写处理。图7示出了半径位置RP0与半径位置RP1之间的半径位置RP3。在图7中,瓦记录区域SMA0、SMA1、SMA3至SMAN相当于从半径位置RP0到半径位置RP3为止的半径范围SRR2。换言之,瓦记录区域SMA0、SMA1、SMA3至SMAN的半径范围SRR2相同。半径范围SRR2比半径范围SRR1要小。换言之,图7所示的瓦记录区域SMA0、SMA1、SMA3至SMAN(的面积)分别比图6所示的瓦记录区域SMA0、SMA1、SMA3至SMAN(的面积)要小。各瓦记录区域SMA0、SMA1、SMA3至SMAN的半径范围SRR1与半径范围SRR2的差分所相当的各区域(变更区域)之和是传统区CZ2的记录容量所相当的区域。换言之,各瓦记录区域SMA0、SMA1、SMA3至SMAN的半径范围SRR1与半径范围SRR2的差分所相当的各区域(变更区域)是将传统区CZ2的记录容量除以有效记录面S0、S1、S3至SN的数量而得到值所相当的区域。在图7中,传统区CZ0、CZ1、CZ3至CZN相当于从半径位置RP3到半径位置RP2为止的半径范围CRR2。换言之,传统区CZ0、CZ1、CZ3至CZN的半径范围CRR2相同。半径范围CRR2比半径范围CRR1要大。换言之,图7所示的传统区CZ0、CZ1、CZ3至CZN(的面积)分别比图6所示的传统区CZ0、CZ1、CZ3至CZN(的面积)大。各传统区CZ0、CZ1、CZ3至CZN的半径范围CRR1与半径范围CRR2的差分所相当的各区域(变更区域)之和是与传统区CZ2的记录容量相当的区域。换言之,各传统区CZ0、CZ1、CZ3至CZN各自的半径范围CRR1与半径范围CRR2的差分所相当的各区域(变更区域)是传统区CZ2的记录容量除以有效记录面S0、S1、S3至SN的数量而得到的值所相当的区域。在图7中,半径范围SRR2比半径范围CRR2要大。在图7中,用户数据区域UA0、UA1、UA3至CZN的半径范围UAR相当于瓦记录区域SMA0、SMA1、SMA3至SMAN的半径范围SRR2与传统区CZ0、CZ1、CZ3至CZN的半径范围CRR2之和。
在图7所示的例子中,记录区域管理部630,与无效记录面S2的传统区CZ2的记录容量相应地,将各有效记录面S0、S1、S3至SN的各瓦记录区域SMA0、SMA1、SMA3至SMAN的一部分均等地变更为各有效记录面S0、S1、S3至SN的各传统区CZ0、CZ1、CZ3至CZN。也就是说,记录区域管理部630使各有效记录面S0、S1、S3至SN的各瓦记录区域SMA0、SMA1、SMA3至SMAN减少与无效记录面S2的传统区CZ2的记录容量除以有效记录面S0、S1、S3至SN的数量而得到的值相当的区域,使各有效记录面S0、S1、S3至SN的各传统区CZ0、CZ1、CZ3至CZN增加与无效记录面S2的传统区CZ2的记录容量除以有效记录面S0、S1、S3至SN的数量而得到的值相当的区域。在图7所示的例子中,对利用Depop功能将头HD2设为了禁止使用的例子进行了说明,但是针对利用Depop功能将头HD2以外的其他头HD设为禁止使用了的情况,也能执行与利用Depop功能将头HD2设为了禁止使用的例子同样的处理。
图8是表示在执行了本实施方式的Depop功能的情况下的用户数据区域UA的一例的示意图。图8对应于图5以及图6。在图8中,利用Depop功能将头HD2设定为禁止使用。也就是说,在图8中,头HD2不执行向记录面S2的用户数据区域UA2的读/写处理。图8示出了半径位置RP0与半径位置RP1之间的半径位置RP4。在图8中,瓦记录区域SMA0相当于从半径位置RP0到半径位置RP4为止的半径范围SRR3。半径范围SRR3比半径范围SRR1小。换言之,图8所示的瓦记录区域SMA0(的面积)比图6所示的瓦记录区域SMA0(的面积)小。瓦记录区域SMA0的半径范围SRR1与半径范围SRR3的差分所相当的区域(变更区域)是与传统区CZ2的记录容量相当的区域。在图8中,传统区CZ0相当于从半径位置RP4到半径位置RP2为止的半径范围CRR3。半径范围CRR3比半径范围CRR1大。换言之,图7所示的传统区CZ0(的面积)比图6所示的传统区CZ0(的面积)大。传统区CZ0的半径范围CRR1与半径范围CRR3的差分所相当的区域(变更区域)是与传统区CZ2的记录容量相当的区域。在图8中,半径范围SRR3比半径范围CRR3大。在图8中,用户数据区域UA0的半径范围UAR相当于瓦记录区域SMA0的半径范围SRR3与传统区CZ0的半径范围CRR3之和。
在图8所示的例子中,记录区域管理部630将与无效记录面S2的传统区CZ2的记录容量相当的有效记录面S0的瓦记录区域SM0的一部分变更为有效记录面S0的传统区CZ0。换言之,记录区域管理部630使有效记录面S0的瓦记录区域SMA0减少与无效记录面S2的传统区CZ2的记录容量相当的区域,使有效记录面S0的传统区CZ0增加与无效记录面S2的传统区CZ2的记录容量相当的区域。在图8所示的例子中,对利用Depop功能将头HD2设为了禁止使用的例子进行了说明,但是针对利用Depop功能将头HD2以外的其他头HD设为了禁止使用的情况,也能执行利用Depop功能将头HD2设为了禁止使用的例子同样的处理。另外,在图8所示的例子中,对与无效记录面S2的传统区CZ2的记录容量相应地,将有效记录面S0的瓦记录区域SMA0的一部分变更为该有效记录面S0的传统区CZ0的例子进行了说明,但是在与无效记录面S2的传统区CZ2的记录容量相应地,将有效记录面S0以外的有效记录面的瓦记录区域SMA变更为有效记录面S0以外的有效记录面所对应的传统区CZ的情况下,也能执行与将有效记录面S0的瓦记录区域SMA0的一部分变更为该有效记录面S0的传统区CZ0的例子同样的处理。
图9是表示本实施方式的用户数据区域UA的一例的图。图9对应于图2、图5至图8。以下,为了便于说明,使用盘DK1的记录面S0的用户数据区域UA0进行说明,但是针对记录面S0以外的其他记录面也能够进行与记录面S0同样的说明。图9示出了在半径方向上相邻的传统区CZ0(CZ)和瓦记录区域SMA0(CZ)。在图9中,传统区CZ0在瓦记录区域SMA0的外方向上相邻。图9示出了传统区CZ0与瓦记录区域SMA0的边界BD。在图9的传统区CZ0上,将轨道CTR00、…、轨道CTR0(N-2),轨道CTR0(N-1),以及轨道CTR0N在顺方向上隔开轨道间距CTP按记载的顺序进行通常记录。轨道CTR00具有轨道中心CTC00,轨道CTR0(N-2)具有轨道中心CTC0(N-2),轨道CTR0(N-1)具有轨道中心CTC0(N-1),轨道CTR0N具有轨道中心CTC0N。在图9中,瓦记录区域SMA0具有:配置用于减少来自相邻的带区域或轨道的漏磁通等的影响(Adjacent Track Interference:ATI)的防护(guard)柱面或防护轨道等的区域GDB。在图9的瓦记录区域SMA0上,将轨道STR00、轨道STR01、轨道STR02、轨道STR03、轨道STR04、轨道STR05、轨道STR06、轨道STR07、…、轨道STR0N在顺方向上隔开轨道间距WTP而按记载的顺序进行瓦记录。轨道STR00具有轨道中心STC00,轨道STR01具有轨道中心STC01,轨道STR02具有轨道中心STC02,轨道STR03具有轨道中心STC03,轨道STR04具有轨道中心STC04,轨道STR05具有轨道中心STC05,轨道STR06具有轨道中心STC06,轨道STR07具有轨道中心STC07,轨道STR0N具有轨道中心STC0N。在图9中,为了便于说明,将各轨道示出为以预定的轨道宽度在圆周方向上延伸的长方形状,但实际上沿着圆周方向弯曲。另外,各轨道也可以是一边在半径方向上变动一边在圆周方向上延伸的波状。
在图9所示的例子中,记录区域管理部630对盘DK1的记录面S0的用户数据区域UA0设定传统区CZ0和瓦记录区域SMA0。记录区域管理部630在盘DK1的记录面S0的用户数据区域UA0设定了传统区CZ0和瓦记录区域SMA0的情况下,读/写控制部610在传统区CZ0中,在半径方向上隔开间隔对多个轨道CTR00至CTR0N进行通常记录,在瓦记录区域SMA0中,沿着顺方向对多个轨道STR00至STR0N进行瓦记录。
图10是表示本实施方式的用户数据区域UA的一例的图。图10对应于图2、图5至图9。图10示出了与无效记录面的传统区CZ的记录容量(或面积)相应地将图9所示的用户数据区域UA0的瓦记录区域SMA0的一部分变更为了传统区CZ0的情况下的传统区CZ0和瓦记录区域SMA0的边界NBD。在图10中,传统区CZ0具有变更区域CGZ0。在图10中,变更区域CGZ0在从图9所示的轨道STR00到轨道STR04为止的半径范围内配置。在图10所示的例子中,变更区域CGZ0相当于从边界BD到边界NBD为止的半径范围。在图10中,由于将从轨道STR00到轨道STR04为止的瓦记录区域SMA0变更为了传统区CZ0(变更区域CGZ0),所以这些从轨道STR00到轨道STR04为止的轨道被消除。在图10的变更区域CGZ0中,将轨道CTR0(N+1),以及轨道CTR0(N+2)在顺方向上隔开轨道间距NCTP按记载的顺序进行通常记录。轨道间距NCTP例如可以与通常记录轨道间距CTP不同,也可以相同。例如,轨道间距NCTP比通常记录轨道间距CTP大。轨道间距NCTP比瓦记录轨道间距WTP大。例如,轨道间距NCTP相当于瓦记录轨道间距WTP的2倍。此外,轨道间距NCTP也可以比通常记录轨道间距CTP小。在图10中,为了便于说明,将各轨道示出为以预定的轨道宽度在圆周方向上延伸的长方形状,但实际上沿着圆周方向弯曲。另外,各轨道也可以是一边在半径方向上变动一边在圆周方向上延伸的波状。
在图10所示的例子中,在记录区域管理部630将有效记录面S0的用户数据区域UA0的瓦记录区域SMA0的一部分变更为了传统区CZ0的情况下,读/写控制部610在从用户数据区域UA0的瓦记录区域SMA0变更为了传统区CZ0的变更区域CGZ0中,在轨道中心STC01定位头HD而对轨道CTR0(N+1)进行写入,从轨道中心STC01起隔开轨道间距NCTP而在轨道中心STC03定位头HD而对轨道CTR0(N+2)进行写入。
如图10所示,在记录区域管理部630将有效记录面S0的用户数据区域UA0的瓦记录区域SMA0的一部分变更为了传统区CZ0的情况下,通过对瓦记录的多个轨道隔开1个(轨道)地进行写入,无需对预定的伺服数据、例如,自检码(Post Code)进行学习而重写就能够作为通常记录区域、例如,传统区CZ而使用。自检码包含用于校正因如下情况产生的误差的数据等,所述情况为,由于与将伺服数据向盘进行写入时的盘DK的旋转同步的抖动(重复偏摆:RRO)而产生的、轨道相对于与盘DK同心圆状配置的头HD的目标位置、例如,轨道中心的变形。
图11是表示本实施方式的用户数据区域UA的一例的图。图11对应于图2、图5至图9。图11的变更区域CGZ0中,以比图10所示的轨道间距NCTP大的轨道间距通常记录有轨道CTR0(N+1)。在图11中,为了便于说明,将各轨道示出为以预定的轨道宽度在圆周方向上延伸的长方形状,但实际上沿着圆周方向弯曲。另外,各轨道也可以是一边在半径方向上变动一边在圆周方向上延伸的波状。
在图11所示的例子中,在记录区域管理部630将有效记录面S0的用户数据区域UA0的瓦记录区域SMA0的一部分变更为了传统区CZ0的情况下,读/写控制部610在从用户数据区域UA0的瓦记录区域SMA0变更为了传统区CZ0的变更区域CGZ0中,在轨道中心STC02定位头HD而对轨道CTR0(N+1)进行写入。
图12是表示本实施方式的Depop处理方法的一例的流程图。
MPU60将头HD的信息向主机100等发送(B1201)。MPU60在从主机100等接受到将不良头HD设为禁止使用的命令的情况下,利用Depop功能将不良头HD设为禁止使用(B1202)。MPU60变更有效记录面的用户数据区域UA的传统区CZ以及瓦记录区域SMA(B1203)。例如,MPU60与无效记录面的传统区CZ的记录容量相应地,将有效记录面的瓦记录区域SMA的一部分变更为该瓦记录区域SMA所对应的传统区CZ。MPU60向传统区CZ写入数据(B1204)。MPU60判定写入数据的传统区CZ是变更区域还是不是变更区域(B1205)。在判定为不是变更区域的情况下(B1205的否),MPU60以通常记录轨道间距在传统区CZ对多个轨道进行通常记录(B1206),结束处理。在判定为是变更区域的情况下(B1205的是),MPU60在变更区域中以与通常记录轨道间距不同的轨道间距对多个轨道进行通常记录(B1207),结束处理。例如,MPU60在变更区域中以比通常记录轨道间距大的轨道间距对多个轨道进行通常记录。例如,MPU60在变更区域中,以与对利用瓦记录重叠写入的多个轨道进行写入时的多个目标位置内的相邻轨道不重叠的方式在能够写入轨道的多个目标位置定位头HD来进行写入(通常记录)。
根据本实施方式,磁盘装置1在利用Depop功能将不良头HD设为了禁止使用的情况下,与无效记录面的用户数据UA的传统区CZ的记录容量相应地,将有效记录面的用户数据区域UA的瓦记录区域SMA的一部分变更为传统区CZ。磁盘装置1在将有效记录面的用户数据区域UA的瓦记录区域SMA的一部分变更为了传统区CZ的情况下,在从该用户数据区域UA的瓦记录区域SMA变更为了传统区CZ的变更区域中,以与对利用瓦记录重叠写入的多个轨道进行写入时的多个目标位置内的相邻轨道不重叠的方式在能够写入轨道的多个目标位置定位头HD来进行写入(通常记录)。因此,在利用Depop功能将预定的不良头HD设为了禁止使用的情况下,磁盘装置1能够防止传统区CZ的合计传统区容量减少。因此,磁盘装置1能够提高性能。
接着,对其他实施方式以及其他变形例的磁盘装置进行说明。在其他实施方式以及其他变形例中,对与前述的实施方式相同的部分标注同一参照标号且省略其详细说明。
(变形例1)
变形例1的磁盘装置1中,Depop处理方法与前述的第1实施方式的磁盘装置1不同。
例如,记录区域管理部630在从有效记录面的用户数据区域UA的瓦记录区域SMA向传统区CZ变更的变更区域是无法写入轨道的大小的情况下,将变更区域扩张为能够写入至少1个轨道的大小。
图13是表示变形例1的用户数据区域UA的一例的图。图13对应于图2、图5至图9。图13示出了在扩张了变更区域CGZ0的情况下的传统区CZ0与瓦记录区域SMA0的边界EBD。在图13中,为了便于说明,将各轨道示出为以预定的轨道宽度在圆周方向上延伸的长方形状,但实际上沿着圆周方向弯曲。另外,各轨道也可以是一边在半径方向上变动一边在圆周方向上延伸的波状。
在图13所示的例子中,记录区域管理部630在变更区域CGZ0是无法写入轨道的大小的情况下,将变更区域CGZ0在半径方向上扩张。例如,记录区域管理部630在变更区域CGZ0是无法写入轨道的大小的情况下,通过将传统区CZ0与瓦记录区域SMA0的边界NBD变更为边界EBD来扩张变更区域CGZ0。
根据本实施方式,磁盘装置1在从有效记录面的用户数据区域UA的瓦记录区域SMA变更为传统区CZ的变更区域是无法写入轨道的大小的情况下,将变更区域扩张为能够写入至少1个轨道的大小。因此,磁盘装置1能够提高性能。
(变形例2)
变形例2的磁盘装置1中,Depop处理方法与前述的第1实施方式以及变形例1的磁盘装置1不同。
读/写控制部610基于配置有头HD的半径位置相对于目标位置的偏移,对校正数据执行算出处理(以下,也有时称为学习处理或学习)。
记录区域管理部630在将有效记录面的用户数据区域UA的瓦记录区域SMA的一部分变更为了传统区CZ的情况下,读/写控制部610在从该用户数据区域UA的瓦记录区域SMA变更为了传统区CZ的变更区域中,在与进行瓦记录的多个轨道的目标位置不同的半径位置进行学习而重写预定的伺服数据、例如,自检码,在该半径位置定位头HD进行写入(通常记录)。
图14是表示变形例2的用户数据区域UA的一例的图。图14对应于图2、图5至图9。图14的变更区域CGZ0中,将轨道CTR0(N+1)以及轨道CTR0(N+2)在顺方向上隔开轨道间距SCTP按记载的顺序进行通常记录。轨道间距SCTP例如也可以与轨道间距CTP以及NCTP不同,也可以相同。轨道间距SCTP比轨道间距CTP大。此外,轨道间距SCTP也可以比轨道间距CTP小。轨道CTR0(N+1)具有轨道中心CTC0(N+1),轨道CTR0(N+2)具有轨道中心CTC0(N+2)。轨道中心CTC0(N+1)位于轨道中心STC00以及STC01之间,轨道中心CTC0(N+2)位于轨道中心STC02以及STC03之间。也就是说,轨道中心CTC0(N+1)以及CTC0(N+2)也可以与利用瓦记录重叠写入的多个轨道的轨道中心中的任一个轨道中心均不一致。轨道CTR0(N+1)具有在圆周方向上隔开间隔配置的多个自检码PSC0(N+1)。轨道CTR0(N+2)具有在圆周方向上隔开间隔配置的多个自检码PSC0(N+2)。在图14中,为了便于说明,将各轨道示出为以预定的轨道宽度在圆周方向上延伸的长方形状,但实际上沿着圆周方向弯曲。另外,各轨道也可以是一边在半径方向上变动一边在圆周方向上延伸的波状。
在图14所示的例子中,在记录区域管理部630将有效记录面的用户数据区域UA0的瓦记录区域SMA0的一部分变更为了传统区CZ0的情况下,读/写控制部610在从用户数据区域UA0的瓦记录区域SMA0变更为了传统区CZ0的变更区域CGZ0中,在轨道中心CTC0(N+1)进行学习而重写自检码PSC0(N+1),在轨道中心CTC0(N+1)定位头HD而对轨道CTR0(N+1)进行写入(通常记录)。
在记录区域管理部630将有效记录面的用户数据区域UA0的瓦记录区域SMA0的一部分变更为了传统区CZ0的情况下,读/写控制部610在从用户数据区域UA0的瓦记录区域SMA0变更为了传统区CZ0的变更区域CGZ0中,在从轨道中心CTC0(N+1)起向内方向分离了轨道间距SCTP的轨道中心CTC0(N+2)进行学习而重写自检码PSC0(N+1),在轨道中心CTC0(N+2)定位头HD而对轨道CTR0(N+2)进行写入(通常记录)。
根据变形例2,磁盘装置1在记录区域管理部630将有效记录面的用户数据区域UA的瓦记录区域SMA的一部分变更为了传统区CZ的情况下,在从该用户数据区域UA的瓦记录区域SMA变更为了传统区CZ的变更区域中,在与进行瓦记录的多个轨道的目标位置不同的半径位置进行学习而重写自检码,在该半径位置定位头HD而进行写入(通常记录)。因此,磁盘装置1能够提高性能。
(第2实施方式)
第2实施方式的磁盘装置1中,盘DK的构成与前述的第1实施方式、变形例1、以及变形例2的磁盘装置1不同。
盘DK还被分配与用户数据区域UA不同的存储区域MDA。存储区域MDA是没有被赋予LBA的区域。存储区域MDA以通常记录写入数据。换言之,存储区域MDA相当于通常记录区域。存储区域MDA例如相当于媒体高速缓存(media cache)。
读/写控制部610按照来自主机100的命令等,在盘DK的存储区域MDA对数据进行通常记录。读/写控制部610例如在存储区域MDA随机以及顺序地对数据进行通常记录。例如,读/写控制部610在存储区域MDA中,如图3所示以通常记录轨道间距写入多个轨道。
记录区域管理部630在头/LBA管理部620利用Depop功能将预定的头HD设为了禁止使用的情况下,在至少1个盘DK的记录面中,将存储区域MDA的一部分变更(或设定)为传统区CZ。换言之,记录区域管理部630在头/LBA管理部620利用Depop功能将预定的头HD设为了禁止使用的情况下,在至少1个盘DK的记录面中,将存储区域MDA的记录容量的一部分变更(或设定)为传统区CZ的记录容量。
记录区域管理部630,与头/LBA管理部620利用Depop功能设为了禁止使用的不良头HD所对应的盘DK的无效记录面的传统区CZ的记录容量(或面积)相应地,在至少1个盘DK的有效记录面中,将存储区域MDA的一部分变更(或设定)为传统区CZ。换言之,记录区域管理部630在头/LBA管理部620利用Depop功能将预定的不良头HD设为了禁止使用的情况下,以使得将头HD设为禁止使用之前的合计传统区容量与将头HD设为了禁止使用的后的合计传统区容量一致的方式,在至少1个盘DK的有效记录面中,将存储区域MDA的一部分变更(或设定)为传统区CZ。
例如,记录区域管理部630,与头/LBA管理部620利用Depop功能设为了禁止使用的不良头HD所对应的盘DK的无效记录面的传统区CZ的记录容量(或面积)相应地,将多个有效记录面所分别对应的多个存储区域MDA一部分变更为这些多个存储区域MDA所分别对应的多个传统区CZ。此外,记录区域管理部630也可以,与头/LBA管理部620利用Depop功能设为了禁止使用的不良头HD所对应的盘DK的无效记录面的传统区CZ的记录容量(或面积)相应地,将多个有效记录面所分别对应的多个存储区域MDA一部分均匀地变更为这些多个存储区域MDA所分别对应的多个传统区CZ。另外,记录区域管理部630也可以与头/LBA管理部620利用Depop功能设为了禁止使用的不良头HD所对应的盘DK的无效记录面的传统区CZ的记录容量(或面积)相应地,将多个有效记录面所分别对应的多个存储区域MDA的一部分不均匀地变更为这些多个存储区域MDA所分别对应的多个传统区CZ。
例如,记录区域管理部630将头/LBA管理部620利用Depop功能设为了禁止使用的不良头HD所对应的盘DK的无效记录面的传统区CZ的记录容量(或面积)所对应的、多个有效记录面的存储区域MDA的一部分变更为多个传统区CZ。此外,记录区域管理部630也可以将头/LBA管理部620利用Depop功能设为了禁止使用的不良头HD所对应的盘DK的无效记录面的传统区CZ的记录容量(或面积)所对应的、多个有效记录面的存储区域MDA的一部分均匀地变更为多个传统区CZ。记录区域管理部630也可以将头/LBA管理部620利用Depop功能设为了禁止使用的不良头HD所对应的盘DK的无效记录面的传统区CZ的记录容量(或面积)所对应的、多个有效记录面的存储区域MDA的一部分不均匀地变更为多个传统区CZ。
例如,记录区域管理部630,与头/LBA管理部620利用Depop功能设为了禁止使用的不良头HD所对应的盘DK的无效记录面的传统区CZ的记录容量相应地,将多个有效记录面中的1个有效记录面所对应的存储区域MDA的一部分变更为该存储区域MDA所对应的传统区CZ。
图15是表示第2实施方式的存储区域MDA的一例的图。图15对应于图2以及图5。在图15中,记录面(表面)S0具有用户数据区域UA0以及存储区域MDA0。记录面(背面)S1具有用户数据区域UA1以及存储区域MDA1。记录面(表面)S2具有用户数据区域UA2以及存储区域MDA2。记录面(背面)S3具有用户数据区域UA3以及存储区域MDA3。记录面(表面)S(N-1)具有用户数据区域UA(N-1)以及存储区域MDA(N-1)。记录面(背面)SN具有用户数据区域UAN以及存储区域MDAN。图15还示出了半径位置RP11、和从半径位置RP11起在半径方向上分离的半径位置RP12。在图15中,存储区域MDA0至MDAN相当于从半径位置RP11到半径位置RP12为止的半径范围MDR1。换言之,在图15中,存储区域MDA0至MDAN的半径范围MDR1相同。
在图15所示的例子中,记录区域管理部630对盘DK1的表面S0的用户数据区域UA0设定:半径范围SRR1的瓦记录区域SMA0、位于瓦记录区域SMA0的外方向的半径范围CRR1的传统区CZ0、以及半径范围MDR1的存储区域MDA0。记录区域管理部630对盘DK1的背面S1的用户数据区域UA1设定:半径范围SRR1的瓦记录区域SMA1、位于瓦记录区域SMA1的外方向的半径范围CRR1的传统区CZ1、以及半径范围MDR1的存储区域MDA1。记录区域管理部630对盘DK2的表面S2的用户数据区域UA2设定:半径范围SRR1的瓦记录区域SMA2、位于瓦记录区域SMA2的外方向的半径范围CRR1的传统区CZ2、以及半径范围MDR1的存储区域MDA2。记录区域管理部630对盘DK2的背面S3的用户数据区域UA3设定:半径范围SRR1的瓦记录区域SMA3、位于瓦记录区域SMA3的外方向的半径范围CRR1的传统区CZ3、以及半径范围MDR1的存储区域MDA3。记录区域管理部630对盘DKN的表面S(N-1)的用户数据区域UA(N-1)设定:半径范围SSR1的瓦记录区域SMA(N-1)、位于瓦记录区域SMA(N-1)的外方向的半径范围CRR1的传统区CZ(N-1)、以及半径范围MDR1的存储区域MDA(N-1)。记录区域管理部630对盘DKN的表面SN的用户数据区域UAN设定半径范围SRR1的瓦记录区域SMAN、位于瓦记录区域SMAN的外方向的半径范围CRR1的传统区CZN、以及半径范围MDR1的存储区域MDAN。
图16是表示执行了第2实施方式的Depop功能的情况下的存储区域MDA的一例的示意图。图16与图15对应。在图16中,利用Depop功能将头HD2设定为禁止使用。也就是说,在图16中,头HD2不执行向记录面S2的读/写处理。图16示出了:半径位置RP13、和半径位置RP11与RP12之间的半径位置RP14。在图16中,传统区CZ0、CZ1、CZ3至CZN相当于从半径位置RP1到半径位置RP13为止的半径范围CRR4。换言之,传统区CZ0、CZ1、CZ3至CZN的半径范围CRR4相同。半径范围CRR4比半径范围CRR1大。换言之,图16所示的传统区CZ0、CZ1、CZ3至CZN(的面积)分别比图15所示的传统区CZ0、CZ1、CZ3至CZN(的面积)大。各传统区CZ0、CZ1、CZ3至CZN中的半径范围CRR1与半径范围CRR4的差分所相当的各区域之和是相当于传统区CZ2的记录容量的区域。换言之,各传统区CZ0、CZ1、CZ3至CZN中的半径范围CRR1与半径范围CRR4的差分所相当的各区域是与传统区CZ2的记录容量除以有效记录面S0、S1、S3至SN的数量而得到的值相当的区域。在图16中,存储区域MDA0、MDA1、MDA3至MDAN相当于从半径位置RP14到半径位置RP12为止的半径范围MDR2。换言之,存储区域MDA0、MDA1、MDA3至MDAN的半径范围MDR2相同。半径范围MDR2比半径范围MDR1小。换言之,图16所示的存储区域MDA0、MDA1、MDA3至MDAN(的面积)分别比图15所示的存储区域MDA0、MDA1、MDA3至MDAN(的面积)小。各存储区域MDA0、MDA1、MDA3至MDAN中的半径范围MDR1与半径范围MDR2的差分所相当的各区域之和,是与传统区CZ2的记录容量相当的区域。换言之,各存储区域MDA0、MDA1、MDA3至MDAN中的半径范围MDR1与半径范围MDR2的差分所相当的各区域是与传统区CZ2的记录容量除以有效记录面S0、S1、S3至SN的数量而得到的值相当的区域。
在图16所示的例子中,记录区域管理部630,与无效记录面S2的传统区CZ2的记录容量相应地,将各有效记录面S0、S1、S3至SN的各存储区域MDA0、MDA1、MDA3至MDAN的一部分均等地变更为各有效记录面S0、S1、S3至SN的各传统区CZ0、CZ1、CZ3至CZN。也就是说,记录区域管理部630使各有效记录面S0、S1、S3至SN的各存储区域MDA0、MDA1、MDA3至MDAN减少与无效记录面S2的传统区CZ2的记录容量除以有效记录面S0、S1、S3至SN的数量而得到的值相当的区域,使各有效记录面S0、S1、S3至SN的各传统区CZ0、CZ1、CZ3至CZN增加与无效记录面S2的传统区CZ2的记录容量除以有效记录面S0、S1、S3至SN的数量而得到的值相当的区域。在图16所示的例子中,对利用Depop功能将头HD2设为了禁止使用的例子进行了说明,但是针对利用Depop功能将头HD2以外的其他头HD设为了禁止使用的情况,也能与利用Depop功能将头HD2设为了禁止使用的例子同样地执行处理。
图17是表示执行了第2实施方式的Depop功能的情况下的存储区域MDA的一例的示意图。图17与图15对应。在图17中,利用Depop功能将头HD2设定为禁止使用。也就是说,在图17中,头HD2不执行向记录面S2的读/写处理。图17示出了:半径位置RP15、半径位置RP11与半径位置RP12之间的半径位置RP16。在图17中,传统区CZ0相当于从半径位置RP1到半径位置RP15为止的半径范围CRR5。半径范围CRR5比半径范围CRR1大。另外,半径范围CRR5比图16所示的半径范围CRR4大。换言之,图17所示的传统区CZ0(的面积)比图15所示的传统区CZ0(的面积)大。传统区CZ0中的半径范围CRR1与半径范围CRR5的差分所相当的区域是与传统区CZ2的记录容量相当的区域。在图17中,存储区域MDA0相当于从半径位置RP16到半径位置RP12为止的半径范围MDR3。半径范围MDR3比半径范围MDR1小。换言之,图17所示的存储区域MDA0(的面积)比图15所示的存储区域MDA0(的面积)小。另外,半径范围MDR3比图16所示的半径范围MDR2小。存储区域MDA0中的半径范围MDR1与半径范围MDR3的差分所相当的区域是与传统区CZ2的记录容量相当的区域。
在图17所示的例子中,记录区域管理部630将与无效记录面S2的传统区CZ2的记录容量相当的有效记录面S0的存储区域MDA0的一部分变更为有效记录面S0的传统区CZ0。换言之,记录区域管理部630使有效记录面S0的存储区域MDA0减少与无效记录面S2的传统区CZ2的记录容量相当的区域,使有效记录面S0的传统区CZ0增加与无效记录面S2的传统区CZ2的记录容量相当的区域。在图17所示的例子中,对利用Depop功能将头HD2设为了禁止使用的例子进行了说明,但是对利用Depop功能对头HD2以外的其他头HD设为了禁止使用的情况也能执行与利用Depop功能将头HD2设为了禁止使用的例子同样的处理。另外,在图17所示的例子中,对与无效记录面S2的传统区CZ2的记录容量相应地,将有效记录面S0的存储区域MDA0的一部分变更为该有效记录面S0的传统区CZ0的例子进行了说明,但是在与无效记录面S2的传统区CZ2的记录容量相应地,将有效记录面S0以外的有效记录面的存储区域MDA变更为有效记录面S0以外的有效记录面所对应的传统区CZ的情况下也能执行与将有效记录面S0的存储区域MDR0的一部分变更为该有效记录面S0的传统区CZ0的例子同样的处理。
图18是表示第2实施方式的Depop处理方法的一例的流程图。
MPU60将头HD的信息向主机100等发送(B1201)。MPU60在从主机100等接受到将不良头HD设为禁止使用的命令的情况下,利用Depop功能将不良头HD设为禁止使用(B1202)。MPU60变更有效记录面的用户数据区域UA的传统区CZ以及存储区域MDA(B1801)。例如,MPU60,与无效记录面的传统区CZ的记录容量相应地,将有效记录面的存储区域MDA的一部分变更为传统区CZ。MPU60向传统区CZ写入数据(B1204),结束处理。
根据第2实施方式,磁盘装置1在利用Depop功能将不良头HD设为了禁止使用的情况下,与无效记录面的用户数据UA的传统区CZ的记录容量相应地,将有效记录面的存储区域MDA的一部分变更为传统区CZ。因此,磁盘装置1能够提高性能。
对几个实施方式进行了说明,但这些实施方式是作为例子而提示的,并不意在限定发明的范围。这些新的实施方式能够以其他各种方式实施,在不脱离发明的要旨的范围内能够进行各种省略、替换、变更。这些实施方式及其变形包含在发明的范围和要旨中,并且包含在专利申请的权利要求所记载的发明和与其均等的范围中。
- 上一篇:石墨接头机器人自动装卡簧、装栓机
- 下一篇:磁头