一种天然气站场设备运行智能监测方法及系统
技术领域
本发明属于天然气站场设备监测领域,更具体地,涉及一种天然气站场设备运行智能监测方法及系统。
背景技术
目前长输天然气站场的主要维检修模式是定期巡检、周期性维修和预防性维护相结合的方式,一定程度上存在“维检修过剩”或“维检修不足”的问题,不利于提高站场的整体运行效率。站内设备的关键运行参数及信号检测较为完善,但对于机械故障的直接监测尚有缺乏,大部分由值班人员通过维检修来发现,或通过相关信号检测异常推断可能出现机械故障。
总体而言,目前由于站场设备本体的监测系统还不够完善,大部分需要通过定期维检修的方式,依靠人员经验来判断机械故障,这对于现场生产运行来说还不够高效可靠。因此,提供一种系统的、科学的天然气站场设备状态监测方法及系统是亟待解决的问题。
发明内容
针对现有技术的以上缺陷和改进需求,本发明提供了一种天然气站场设备运行智能监测方法及系统,其目的在于弥补目前天然气站场设备监测系统不够完善问题,用以实时监测设备运行状态,及时发现设备故障,减少人员巡检工作量,提升站场整体生产效率和运行可靠性。
针对现有技术的以上缺陷或改进需求,本发明提供了一种天然气站场设备运行智能监测方法及系统,其目的在于解决目前天然气站场设备监测系统不够完善而导致的站场整体运行效率低的问题。
为实现上述目的,一方面,本发明提供了一种天然气站场设备运行智能监测方法,包括以下步骤:
S1、用声阵列采集天然气站场设备运行状态的音频信号;
S2、对阵列各通道音频进行离群点检测,以筛除异常音频及其对应阵元;
S3、使用延时-求和波束形成算法进行音频成像并获取目标设备的音频频谱;
S4、从波束形成的频谱中提取梅尔倒谱特征并进行标准化处理,输入到预训练好的天然气站场设备状态分类模型中诊断设备状态。
进一步优选地,步骤S1中,声阵列包括传声器、摄像头、数据采集卡;其中,阵列平面上的多个传声器呈多臂螺旋形状,用于接收设备音频;摄像头的接收方向和阵列平面的接收方向相同,用于拍摄现场图像;数据采集卡通过信号线与各传声器相连,用于对各通道音频进行同步采样。
进一步优选地,步骤S2包括以下步骤:
S21、从各通道音频中提取梅尔倒谱特征,过程如下:
对音频进行分帧处理后计算每帧音频的功率谱,将梅尔滤波器组应用于功率谱,计算滤波器的能量和并取对数,计算公式如下:
其中,Si(k)为第i帧音频的功率谱,Bm(k)为第m个三角滤波器的频率响应,频带范围为[fm-1,fm+1],随m值的增大而增宽;
进一步地,应用离散余弦变换对滤波器组系数做去相关处理,计算公式如下:
其中,M为滤波器个数,L为梅尔倒谱系数阶数;
进一步地,为了获取帧之间的动态变化信息,计算一阶差分MFCC,计算公式如下:
其中,dt为根据第t-N帧到第t+N帧音频的MFCC计算得到的第t帧音频的MFCC一阶差分,N取2;
进一步地,取各帧音频的MFCC和一阶差分MFCC的平均值,组成特征向量;
S22、通过局部异常因子算法计算各特征向量的异常得分;
计算点p的局部可达密度,计算公式如下:
其中,Nk(p)为与点p的距离不大于点p的第k距离k-distance(p)的所有点,reach-dist(p,o)=max{k-distance(o),d(p,o)}为点p相对于点o的可达距离;
进一步地,计算点p的LOF值,计算公式如下:
S23、筛除异常得分高于设定阈值的音频及其对应阵元;
由LOF算法可计算得到各特征向量的异常得分,若得分大于异常阈值则被认为是离群点,筛除异常音频及其对应阵元以排除少数离群点的干扰,增强波束形成算法的鲁棒性,降低波束形成的音频中的噪声。
进一步优选地,步骤S3中,延时-求和波束形成算法对各通道信号进行延时,然后再同相相加,计算公式如下:
其中,E为阵元数量,xi(t)为第i个阵元接收到的信号,τi为xi(t)对应的时延补偿,为阵列流形矩阵,H表示向量或矩阵的共轭转置,x(t)为接收信号向量;
进一步地,由不同的空间角扫描空间,得到与空间角相关的信号功率谱,计算公式如下:
其中,R为接收信号的协方差矩阵;
进一步地,设目标设备到阵列中心的距离为D,将空间角转化为阵列平面上的坐标(xc,yc),计算公式如下:
根据不同坐标(xc,yc)处的功率谱强度来绘制颜色图,与现场图像叠加后得到音频成像结果;
进一步地,由功率谱波峰处的空间角得到其对应的阵列流行矩阵对各通道信号X(ω)进行延时叠加,获取目标设备的音频频谱,计算公式如下:
进一步优选地,步骤S4中,波束形成的音频频谱的MFCC特征提取过程如下:
对音频进行分帧处理后计算每帧音频的功率谱,将梅尔滤波器组应用于功率谱,计算滤波器的能量和并取对数,计算公式如下:
其中,Si(k)为第i帧音频的功率谱,Bm(k)为第m个三角滤波器的频率响应,频带范围为[fm-1,fm+1],随m值的增大而增宽;
进一步地,应用离散余弦变换对滤波器组系数做去相关处理,计算公式如下:
其中,M为滤波器个数,L为梅尔倒谱系数阶数;
进一步地,为了获取帧之间的动态变化信息,计算一阶差分MFCC,计算公式如下:
其中,dt为根据第t-N帧到第t+N帧音频的MFCC计算得到的第t帧音频的MFCC一阶差分,N取2;
进一步地,取各帧音频的MFCC和一阶差分MFCC的平均值,组成特征向量。
另一方面,本发明提供了一种天然气站场设备运行智能监测系统,包括依次电性连接的音频信号采集模块、音频信号离群检测模块、音频信号波束形成模块和天然气站场设备诊断模块;
音频信号采集模块用于采集天然气站场设备运行状态的音频信号和现场图像,并输出到音频信号离群检测模块;
音频信号离群检测模块用于对阵列采集的各通道音频进行离群点检测,以筛除异常音频及其对应阵元,并输出到音频信号波束形成模块;
音频信号波束形成模块用于在现场图像上进行音频成像,获取目标设备的音频频谱,并输出到天然气站场设备诊断模块;
天然气站场设备诊断模块用于从波束形成的频谱中提取MFCC特征并进行标准化处理,将其输入到预训练好的天然气站场设备状态分类模型中,诊断设备是否发生故障,若发生故障,诊断故障类型。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
1、本发明提出了一种天然气站场设备运行智能监测方法,这种方法能够可靠地对站场设备进行智能监测,有效降低站场设备故障诊断的难度,减少站场设备的维保成本,减少人员巡检工作量,提高站场的整体生产效率和运行可靠性;
2、本发明所提出的天然气站场设备运行智能监测方法,通过对阵列各通道音频进行离群点检测,以降低少数离群点对波束形成算法的干扰,提高波束形成的音频的信噪比,可以提升音频成像和设备状态分类模型的效果;
3、本发明所提出的天然气站场设备运行智能监测方法,从波束形成的频谱中提取MFCC特征,同时考虑表征音频动态特性的一阶差分MFCC,能够有效地提高离群点检测和设备故障诊断的准确率。
附图说明
附图1为本发明所提供的一种天然气站场设备运行智能监测方法流程图;
附图2为本发明所提供的对阵列各通道音频进行离群点检测流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1:
如图1所示,本发明提供了一种天然气站场设备运行智能监测方法,包括以下步骤:
S1、用声阵列采集天然气站场设备运行状态的音频信号;
S2、对阵列各通道音频进行离群点检测,以筛除异常音频及其对应阵元;
具体的,如图2所示,包括以下步骤:
S21、从各通道音频中提取梅尔倒谱特征,过程如下:
对音频进行分帧处理后计算每帧音频的功率谱,将梅尔滤波器组应用于功率谱,计算滤波器的能量和并取对数,计算公式如下:
其中,Si(k)为第i帧音频的功率谱,Bm(k)为第m个三角滤波器的频率响应,频带范围为[fm-1,fm+1],随m值的增大而增宽。本实施例中,帧长取约80ms,帧移取约40ms,三角滤波器的个数取26;
进一步的,应用离散余弦变换对滤波器组系数做去相关处理,计算公式如下:
其中,M为滤波器个数,L为梅尔倒谱系数(MFCC)阶数。本实施例中L取26,保存MFCC的第2-13个系数;
进一步的,为了获取帧之间的动态变化信息,计算一阶差分MFCC,计算公式如下:
其中,dt为根据第t-N帧到第t+N帧音频的MFCC计算得到的第t帧音频的MFCC一阶差分,N通常取2;
进一步的,取各帧音频的MFCC和一阶差分MFCC的平均值,组成24维的特征向量;
S22、通过局部异常因子算法计算各特征向量的异常得分;
计算点p的局部可达密度,计算公式如下:
其中,Nk(p)为与点p的距离不大于点p的第k距离k-distance(p)的所有点,reach-dist(p,o)=max{k-distance(o),d(p,o)}为点p相对于点o的可达距离。本实施例中k取10;
进一步的,计算点p的LOF值,计算公式如下:
其中,点p的局部可达密度越低,点p的第k距离邻域的最小近邻的局部可达性密度越高,点p的LOF值越高。对于一个簇中的大多数点,其LOF值近似等于1;
S23、筛除异常得分高于设定阈值的音频及其对应阵元;
由LOF算法可计算得到各特征向量的异常得分,若得分大于异常阈值则被认为是离群点,筛除异常音频及其对应阵元以排除少数离群点的干扰。为了取得更好的检测效果,本实施例中异常阈值设为2;
S3、使用延时-求和(DAS)波束形成算法进行音频成像并获取目标设备的音频频谱;
具体的,用DAS波束形成算法对各通道信号进行适当的延时,然后再同相相加,计算公式如下:
其中,E为阵元数量,xi(t)为第i个阵元接收到的信号,τi为xi(t)对应的时延补偿,为阵列流形矩阵,H为向量或矩阵的共轭转置,x(t)为接收信号向量。本实施例中E取30;
进一步的,由不同的空间角扫描空间,得到与空间角相关的信号功率谱,计算公式如下:
其中,R为接收信号的协方差矩阵;
进一步的,设目标设备到阵列中心的距离为D,将空间角转化为阵列平面上的坐标(xc,yc),计算公式如下:
根据不同坐标(xc,yc)处的功率谱强度来绘制颜色图,与现场图像叠加后得到音频成像结果;
进一步的,由功率谱波峰处的空间角得到其对应的阵列流行向量对各通道信号X(ω)进行延时叠加,获取目标设备的音频频谱,计算公式如下:
S4、从波束形成的频谱中提取梅尔倒谱特征并进行标准化处理,输入到预训练好的天然气站场设备状态分类模型中诊断设备状态。
具体的,波束形成的音频频谱的MFCC特征提取过程同步骤S21。
具体的,通过步骤S1-S3获取不同设备状态的波束形成的音频频谱,其中,设备状态包括不同设备的正常状态和故障状态;其中,设备包括:分离器、调压撬、计量撬、压缩机、管线、阀门等;设备故障包括:滤芯超限、膜片损伤、超声探头松动、涡轮叶片卡滞、整流器堵塞、螺栓松动等。
进一步的,从不同设备状态的频谱中提取MFCC特征并进行标准化处理,与其相应的状态一一对应后得到训练数据集,以预训练天然气站场设备状态分类模型。
具体的,将已标准化处理的MFCC特征输入到预训练好的天然气站场设备状态分类模型中诊断设备状态,若发生故障,值班人员可由现场图像上的音频成像结果快速确定故障设备,并根据故障类型及时采取对应的处理措施。
实施例2:
本发明提供了一种天然气站场设备运行智能监测系统,包括依次电性连接的音频信号采集模块、音频信号离群检测模块、音频信号波束形成模块和天然气站场设备诊断模块;
音频信号采集模块用于采集天然气站场设备运行状态的音频信号和现场图像,并输出到音频信号离群检测模块;
音频信号离群检测模块用于对阵列采集的各通道音频进行离群点检测,以筛除异常音频及其对应阵元,并输出到音频信号波束形成模块;
音频信号波束形成模块用于在现场图像上进行音频成像,获取目标设备的音频频谱,并输出到天然气站场设备诊断模块;
天然气站场设备诊断模块用于从波束形成的频谱中提取MFCC特征并进行标准化处理,将其输入到预训练好的天然气站场设备状态分类模型中,诊断设备是否发生故障,若发生故障,诊断故障类型。
本实施例的相关技术方案同实施例1,此处不再赘述。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
- 上一篇:石墨接头机器人自动装卡簧、装栓机
- 下一篇:一种基于多源语音数据的语音对齐方法