一种基于鲸鱼优化算法的小波去噪最优阈值整定方法
技术领域
本发明涉及电力技术以及信号处理领域,具体涉及一种基于鲸鱼优化算法的小波去噪阈值参数整定方法。
背景技术
在电力设备局部放电在线监测对保障设备安全运行具有重要意义,由于现场无线电干扰、白噪声以及脉冲干扰等严重影响局部放电在线监测的灵敏度和精度,因此多种抗干扰电路和数字化去噪方法在局部放电在线监测中得到应用。而非稳态信号的观测数据中的细节部分蕴含着大量的特征信息,特别是在行波故障测距中,噪声会影响行波波头的提取,因此在对含噪声信号进行去噪处理时,人们希望在滤除噪声的同时能够较好地保留其细节。
小波阈值去噪算法通过设定适当的阈值,根据选定的阈值函数修改信号的小波分解系数从而达到去噪的目的。有文献提出了均方差函数的近似函数,通过该函数能够获得均方差意义下的最优值,并围绕着最优阈值做了大量的研究工作,使得小波阈值滤波方法趋于完善。近年来,其他学者在构造阈值函数和最优阈值的确定等方面做了大量的工作,通过各种方法获得均方差意义上的最佳去噪效果。传统的傅里叶变换在稳态信号的去噪中发挥着巨大的作用,但是不能刻画非稳态信号的局部信息,因此不适用于此类信号的去噪处理。小波基函数相对于傅里叶变换所用的正弦基函数具有局部分析功能,能够非常好地刻画信号的细节特征。并且小波阈值的最优选择对提取有效的局部放电信号具有重要的意义。
小波阈值的选择会造成去噪信号畸变,也有可能导致行波波头的误识别,因此阈值选择是小波去噪效果优劣的关键问题之一。
发明内容
针对最优阈值小波算法去噪时迭代难以收敛、计算时间长,很难实际应用于电力设备实时监测系统的问题,以及对行波测距中在含噪声状态下小波变换提取行波波头困难的问题,引进鲸鱼优化算法(WOA)对小波阈值法的阈值最优解进行参数整定。鲸鱼优化算法具有原理简单、过程易于实现、寻优速度快等优点,可以对目标函数在解空间进行全局并行随机搜索,使阈值的获取快速且准确,对于小波去噪算法具有重大意义。
本发明采用以下技术方案:
Step 1将检测到的电网原始信号进行加噪处理,然后用小波变换对信号进行多分辨率分析,得到各层的小波系数。
Step 2设置鲸鱼的种群规模为N,这样就会产生N只鲸鱼的位置。然后对算法的各种参数进行初始化以及设置算法的最大迭代次数tmax;
Step 3用初始的鲸鱼位置作为阈值函数的值,并对小波系数进行阈值化处理,得到新的小波系数并求逆变换得到去噪后的电网信号。其中阈值函数如下:
式中,λ是小波系数阈值,y是电网信号分解出来的小波系数,β为一正整数,可取β=2。
Step 4将新的电网信号与电网原始信号作最小均方差处理,以此作为目标函数。目标函数为:
式中,为含噪声信号经阈值法处理后的估计信号,s为电网初始信号。
Step 5通过目标函数计算初始状态下每只鲸鱼的适应度值并进行排序,确定合适的鲸鱼位置作为算法的初始最优解,定义为X*;
Step 6进入算法主循环,判断p的值,若p<0.5且|A|<1,则鲸鱼个体按式(1.3)对猎物进行收缩包围,更新当前位置,否则按照式(2.1)进行全局代理更新位置。若p≥0.5,则鲸鱼个体按照式(1.7)以螺旋运动的方式更新位置。
进一步说明算法循环的原理
⑴包围捕食
在此阶段,每头座头鲸个体的位置都代表了在搜索空间内所求优化问题的一个潜在解,假设搜索空间的维度为d,搜索空间中随机产生N个鲸鱼个体组成初始种群。由于优化问题的全局最优解在搜索过程中并不是先验已知的,所以将种群适应度最低的当做目前的全局最优解。在定义完全局最优解后,其他鲸鱼个体将会向该最优个体方向游去,即对自身的位置进行更新迭代,其数学模型为:
X(t+1)=X*(t)-A·D (1.3)
式中,t代表算法的迭代次数,X*(t)为第t次迭代中鲸鱼的最优位置,X(t)为第t次迭代中鲸鱼个体的位置,D为鲸鱼个体位置即求解个体与最优解之间的距离,常数A为收敛因子,C为摆动因子,分别由下面两式计算得出:
A=2a×r1-a (1.4)
C=2×r2 (1.5)
式中,r1和r2是(0,1)中的随机数,a的值随迭代次数的增加从2线性递减到0。
⑵气泡捕食
根据座头鲸的狩猎行为,其在收缩猎物包围圈的同时,沿螺旋状向上游行用来形成气泡网攻击,收缩机制是通过a的线性减小来实现的,而螺旋游走路径的数学模型为:
X(t+1)=X*(t)+Dp·ebl·cos(2πl) (1.7)
Dp=|X*(t)-X(t)| (1.8)
式中,Dp代表鲸鱼个体和最优个体的距离;b为螺旋形常数,其作用是限定搜索个体进行螺旋运动的形状;l为[-1,1]之间的随机值。
当算法中收敛因子|A|<1时,鲸鱼在捕食过程中同时进行收缩包围和螺旋游走时,为了模仿这种行为,在算法中需要引入选择概率p,其数学模型为:
式中,p为[0,1]上的均匀分布。
从式(1.9)可以看到,鲸鱼优化算法以相同概率来选择收缩包围和螺旋运动来更新鲸鱼下一刻的位置。
⑶搜索猎物
当算法中收敛因子|A|>1时,鲸鱼将会在收缩包围圈外游动,此时的鲸鱼不再跟随最好的鲸鱼位置而是随机的在更大范围内搜索猎物即全局搜索,从而避免陷入局部最优,此时的位置更新公式为:
D=|CXrand-X(t)| (2.0)
X(t+1)=Xrand-A·D (2.1)
式中,Xrand为当前种群中随机的一只鲸鱼位置。
Step 7此时位置更新完毕,对所有的鲸鱼个体再次进行目标适应度值计算,与之前的初始最优解进行对比,若优于X*,则对X*信息进行替换。
Step 8判断是否达到最大迭代次数,若满足则终止迭代,输出当前最优解,否则转到Step3继续进行迭代。
本发明的有益效果:
通过本发明引进鲸鱼优化算法,对最优阈值小波去噪的阈值最优解进行参数整定。鲸鱼优化算法具有原理简单、过程易于实现、寻优速度快等优点,可以对目标函数在解空间进行全局并行随机搜索,使阈值的获取快速且准确,极大地降低了计算时间及成本,对小波去噪在在线监测系统中的实际应用具有重大意义。
附图说明
图1为本发明基于鲸鱼优化算法对小波阈值法最优阈值的整定流程图;
图2为电网初始电流信号经小波分解后的小波系数与加噪后的小波系数与经鲸鱼优化算法的小波阈值法处理后的小波系数的对比图
图3为去噪前的电网信号与去噪后的电网信号的概貌对比图
图4为去噪前的电网信号与去噪后的电网信号的细节对比图
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
如图1~4所示,本发明的一个实施算例,公开了一种基于鲸鱼优化算法的小波去噪阈值参数整定方法,包括以下步骤:
⑴将检测到的电网原始故障信号进行加噪处理,然后用小波变换对信号进行多分辨率分析,得到各层的小波系数。
⑵设置鲸鱼的种群规模为N,这样就会产生N只鲸鱼的位置。然后对算法的各种参数进行初始化以及设置算法的最大迭代次数tmax;
⑶用初始的鲸鱼位置作为阈值函数的值,并对小波系数进行阈值化处理,得到新的小波系数并求逆变换得到去噪后的电网信号。其中阈值函数如下:
式中,λ是小波系数阈值,y是电网信号分解出来的小波系数,β为一正整数,可取β=2。
⑷将新的电网信号与电网原始信号作最小均方差处理,以此作为目标函数。目标函数为:
式中,为含噪声信号经阈值法处理后的估计信号,s为电网初始信号。
⑸通过目标函数计算初始状态下每只鲸鱼的适应度值并进行排序,确定合适的鲸鱼位置作为算法的初始最优解,定义为X*;
⑹进入算法主循环,判断p的值,若p<0.5且|A|<1,则鲸鱼个体按式(1.3)对猎物进行收缩包围,更新当前位置,否则按照式(2.1)进行全局代理更新位置。若p≥0.5,则鲸鱼个体按照式(1.7)以螺旋运动的方式更新位置。
进一步说明算法循环的原理
①包围捕食
在此阶段,每头座头鲸个体的位置都代表了在搜索空间内所求优化问题的一个潜在解,假设搜索空间的维度为d,搜索空间中随机产生N个鲸鱼个体组成初始种群。由于优化问题的全局最优解在搜索过程中并不是先验已知的,所以将种群适应度最低的当做目前的全局最优解。在定义完全局最优解后,其他鲸鱼个体将会向该最优个体方向游去,即对自身的位置进行更新迭代,其数学模型为:
X(t+1)=X*(t)-A·D (1.3)
式中,t代表算法的迭代次数,X*(t)为第t次迭代中鲸鱼的最优位置,X(t)为第t次迭代中鲸鱼个体的位置,D为鲸鱼个体位置即求解个体与最优解之间的距离,常数A为收敛因子,C为摆动因子,分别由下面两式计算得出:
A=2a×r1-a (1.4)
C=2×r2 (1.5)
式中,r1和r2是(0,1)中的随机数,a的值随迭代次数的增加从2线性递减到0。
②气泡捕食
根据座头鲸的狩猎行为,其在收缩猎物包围圈的同时,沿螺旋状向上游行用来形成气泡网攻击,收缩机制是通过a的线性减小来实现的,而螺旋游走路径的数学模型为:
X(t+1)=X*(t)+Dp·ebl·cos(2πl) (1.7)
Dp=|X*(t)-X(t)| (1.8)
式中,Dp代表鲸鱼个体和最优个体的距离;b为螺旋形常数,其作用是限定搜索个体进行螺旋运动的形状;l为[-1,1]之间的随机值。
当算法中收敛因子|A|<1时,鲸鱼在捕食过程中同时进行收缩包围和螺旋游走是,为了模仿这种行为,在算法中需要引入选择概率p,其数学模型为:
式中,p为[0,1]上的均匀分布。
从式(1.9)可以看到,鲸鱼优化算法以相同概率来选择收缩包围和螺旋运动来更新鲸鱼下一刻的位置。
③搜索猎物
当算法中收敛因子|A|>1时,鲸鱼将会在收缩包围圈外游动,此时的鲸鱼不再跟随最好的鲸鱼位置而是随机的在更大范围内搜索猎物即全局搜索,从而避免陷入局部最优,此时的位置更新公式为:
D=|CXrand-X(t)| (2.0)
X(t+1)=Xrand-A·D (2.1)
式中,Xrand为当前种群中随机的一只鲸鱼位置。
⑺此时位置更新完毕,对所有的鲸鱼个体再次进行目标适应度值计算,与之前的初始最优解进行对比,若优于X*,则对X*信息进行替换。
⑻判断是否达到最大迭代次数,若满足则终止迭代,输出当前最优解,否则转到Step3继续进行迭代。
本实例中选用350kv电网单相短路故障,采用ATP/EMTP电磁仿真软件,采集A相故障电流作为分析对象。通过图2~4,可以看出本发明引入鲸鱼优化算法后可以有效整定最优阈值参数,能明显保留行波波头信息,且去噪效果前后对比明显。
最后说明的是,以上仅对本发明具体实施例进行详细描述说明。但本发明并不限制于以上描述具体实施例。本领域的技术人员对本发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都涵盖在本发明范围内。
- 上一篇:石墨接头机器人自动装卡簧、装栓机
- 下一篇:目标聚档方法、电子设备和计算机存储介质