一种基于高泛化神经网络的地空电磁数据反演方法

文档序号:6711 发布日期:2021-09-17 浏览:49次 英文

一种基于高泛化神经网络的地空电磁数据反演方法

技术领域

本发明涉及一种地球物理探测领域的反演方法,尤其适用于符合实际地下介质复杂特征和电磁反常扩散现象的电磁勘探方法。

背景技术

在地球物理探测领域中,随着仪器精细化探测,电磁反常扩散现象逐渐被观测到。实际地下介质在其沉积或成岩等过程中受到差异压实和变质作用等影响,使得地层具有非线性、多孔介质等特征,实际多金属矿等介质属于极化介质。针对实际地质复杂结构和反常扩散(慢扩散、快扩散)现象,重新定义地下介质模型进行精细化探测,因此岩石的电导率、反常扩散参数等多参数同时提取尤为重要。神经网络反演方法能够实现,因此要研究高泛化神经网络以提高解释精度。

CN110968826A公开了一种基于空间映射技术的大地电磁深度神经网络反演方法,通过地电模型样本集和大地电磁正演响应数据集,建立深度学习神经网络,快速准确预测地下电性结构。但是该反演方法是基于均匀介质理论下的预测电性结构方法,而未考虑电磁反常扩散现象。

CN201810174296.7公开了一种粗糙介质模型的时域电磁数据慢扩散成像方法,对电偶极子磁场响应求解直流电导率和广义扩散深度,绘制电阻率-广义趋肤深度图。但是该方法未提取慢扩散参数等信息且未考虑极化介质参数。

CN110673218A公开了一种接地导线源瞬变电磁响应中极化介质参数信息的提取方法,利用受极化效应影响较小的垂直磁场反演获取地下电阻率信息,再正演获取电场响应,在观测数据中得到纯极化响应,对其反演获取极化参数信息。但是该方法分别求解电阻率、极化率等参数,所以针对实际反常扩散电磁数据多参数提取的反演方法研究具有重要意义。

发明内容

本发明的目的在于针对现有电磁数据参数提取方法的不足,根据实际地下复杂介质,提供一种基于高泛化神经网络的地空电磁数据反演方法。

本发明是这样实现的,一种基于高泛化神经网络的地空电磁数据反演方法包括:

1)获取探测区域地质资料及岩石物性信息,构建反常扩散分数阶模型,计算地空电磁响应,建立电磁响应与反常扩散分数阶模型的输入输出样本集;

2)根据步骤1的样本集和神经网络需求,优化设计网络结构、选取训练函数、激活函数;

3)对于步骤2构建的深度d,宽度h的神经网络,限制每个参数矩阵W1,...Wj...,Wd为对角矩阵j∈{1,...,d}并且Frobenius规范最多为1,采用适当的秩为1矩阵替换秩接近1的参数矩阵,获得近似神经网络,即为由深度r'网络和单变量函数组成;

进一步地,步骤3中秩为1参数矩阵Wr′=suvT,其中s,u,v为矩阵Wr′奇异值分解,s,v为正交矩阵,u为矩阵对角矩阵;具有秩为1参数矩阵的近似神经网络表示为

即可认为网络是由深度r'网络和单变量函数组成,其中σj为第j层的激活函数,r∈{1,...,d},r′∈{1,...,r}。

4)对于步骤3中单变量函数的Lipschitz函数,令其所有输入0映射到相同的固定输出a;

进一步地,步骤4中,单变量函数的Lipschitz常数最多为γ为边距参数,每个参数矩阵最多具有谱范数M(j);将所有j的输入0映射到相同的固定输出a;函数f类别为其中f(0)=a。

5)通过的实值损失函数限制神经网络的Rademacher复杂度,限制神经网络的泛化误差,获取高泛化神经网络;

进一步地,步骤5中,l1,...lm的实值损失函数,令其满足xk为数据点集k∈{1,...,m},H为实值函数类,并满足l1(0)=l2(0)=...=lm(0)=a(a∈R),那么Rademacher复杂度的上限是,其中c>0是常数,B为最大范数。通过适当地调整r,限定Rademacher复杂度;通过Rademacher复杂度和神经网络泛化误差的关系,限制神经网络泛化误差,即可获得高泛化神经网络。

6)采用步骤5的高泛化神经网络对地空电磁数据进行反演,并对反演结果进行成像。

进一步地,步骤6中包含以下步骤:

Ⅰ、根据探测要求,进行实际飞行探测;

Ⅱ、对地空电磁数据进行预处理,包含基线校正、叠加、去噪以及数据取样;

Ⅲ、将步骤Ⅱ中的数据输入到步骤5中的高泛化神经网络中,提取电阻率、反常扩散参数等多参数信息;

Ⅳ、对步骤Ⅲ的输出结果进行多参数成像,并形成反常扩散模型;

Ⅴ、分析步骤Ⅳ成像结果,获取地下介质信息。

有益效果:本发明与现有技术相比,针对地质构造的复杂特征,依据反常扩散分数阶模型,限制神经网络的Rademacher复杂度获取高泛化神经网络,能够提高电导率、反常扩散参数等多参数信息的提取精度,有利于地空电磁探测技术的实用化。本方法为我国开展电磁探测寻找资源提供新的技术保障,有利于电磁探测方法的精细化、实用化。

附图说明

图1是基于高泛化神经网络的地空电磁数据反演方法流程图;

图2是本发明一个实施例的电阻率-深度效果图;

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图和具体实施方式,对本发明进行进一步详细说明。本发明的核心构思之一在于,利用神经网络进行地空电磁数据反常扩散多参数提取,限制神经网络的Rademacher复杂度获取高泛化神经网络,获得地质目标体的较准确信息。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。

实施例

以粗糙介质慢扩散模型为例

结合图1所示,一种基于高泛化神经网络的地空电磁数据反演方法,包括:1)获取探测区域地质资料及岩石物性信息,构建反常扩散分数阶模型,计算地

空电磁响应,建立电磁响应与反常扩散分数阶模型的输入输出样本集;

定义粗糙介质慢扩散分数阶模型电导率表达式为

σ(ω)=m1σ0+m2σ0(iω) (1)

其中ω为角频率,σ0为直流电导率,m1,m2为权重系数,β为空间均匀粗糙度参数。将电导率代入麦克斯韦方程中,推导长导线源垂直磁场表达式,根据法拉第电磁感应定律,电性源地空电磁响应感应电动势公式为:

其中I为发射电流,ω为角频率,μ为磁导率,S为接收线圈有效面积,2L为接地导线长度,rTE为反射系数,e≈2.718,J1为贝塞尔函数一阶表达式,R为收发距R=[(x-x')2+y2]1/2,x为接收点的x坐标,y为接收点的y坐标,z为接收点的z坐标,λ、x'为被积分变量。

根据探测区域地质资料及岩石物性信息,设置粗糙介质慢扩散分数阶模型电导率各参数,应用公式(2)计算地空电磁响应,建立电磁响应与模型的样本集。2)根据步骤1的样本集和神经网络需求,优化设计网络结构、选取训练函数、激活函数;

3)对于步骤2构建的深度d,宽度h的神经网络,限制每个参数矩阵W1,...Wj...,Wd为对角矩阵(j∈{1,...,d})并且Frobenius规范最多为1,采用适当的秩为1矩阵替换秩接近1的参数矩阵,获得近似神经网络,即为由深度r'网络和单变量函数组成;

令神经网络中和Schatten p范数的乘积是有界的(任意p<∞),那么参数矩阵W1,...Wj...,Wd中至少有一个参数矩阵的秩接近1,即在r'层中可以采用适当的秩1矩阵替换该参数矩阵获得近似神经网络。秩为1参数矩阵Wr′=suvT,其中s,u,v为矩阵Wr′奇异值分解,s,v为正交矩阵,u为矩阵对角矩阵;具有秩为1参数矩阵的近似神经网络表示为

即可认为网络是由深度r'网络和单变量函数组成,其中σj为第j层的激活函数,r∈{1,...,d},r′∈{1,...,r}。

4)对于步骤3中单变量函数的Lipschitz函数,令其所有输入0映射到相同的固定输出a;

单变量函数的Lipschitz常数最多为γ为边距参数,每个参数矩阵最多具有谱范数M(j);将所有j的输入0映射到相同的固定输出a;函数f类别为其中f(0)=a。

5)通过的实值损失函数限制神经网络的Rademacher复杂度,限制神经网络的泛化误差,获取高泛化神经网络;

对于的实值损失函数,令其满足xk为数据点集(k∈{1,...,m}),H为实值函数类,并满足l1(0)=l2(0)=...=lm(0)=a(a∈R),那么Rademacher复杂度的上限是,其中c>0是常数,B为最大范数。令神经网络每个参数矩阵Wj满足||Wj||F≤MF(j)(Frobenius范数边界MF(1),...,MF(r)),并且具有1-Lipschitz正齐次元素激活函数,则

其中忽略对数因子并用第一个参数替换最小值,界限最多为

如果ПjMF(j)和∏jMF(j)/Γ是由一个常数限制,那么将得到高泛化卷积神经网络。

6)采用步骤5的高泛化神经网络对地空电磁数据进行反演,并对反演结果进行成像。

步骤6中包含以下步骤:

Ⅰ、根据探测要求,进行实际飞行探测;

Ⅱ、对地空电磁数据进行预处理,包含基线校正、叠加、去噪以及数据取样;

Ⅲ、将步骤Ⅱ中的数据输入到步骤5中的高泛化神经网络中,提取电阻率、反常扩散参数等多参数信息;

Ⅳ、对步骤Ⅲ的输出结果进行多参数成像,并形成反常扩散模型;

Ⅴ、分析步骤Ⅳ成像结果,获取地下介质信息。

图2为采用图1所示的本发明一个实施例的电阻率-深度效果图,结果符合实施例实际,为地空电磁探测方法实测数据高精度反演提供了新的思路和方法。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

完整详细技术资料下载
上一篇:石墨接头机器人自动装卡簧、装栓机
下一篇:探测器模块、探测器设备和检查设备

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!