一种流体导热系数测量装置和方法

文档序号:6140 发布日期:2021-09-17 浏览:80次 英文

一种流体导热系数测量装置和方法

技术领域

本发明涉及一种测量流体导热系数的方法和装置,具体涉及的一种基于圆管内层流对流传热换热特性的测量流体导热系数的方法和装置。

背景技术

导热系数是表征材料传导热量性能优劣的参数,其在工程上有很重要的应用。而不同物质的导热系数各不相同,即使是同一种材料,导热系数值还与温度等因素有关,因此准确测定物质的导热系数的数值对于工程应用和学术研究都有着重要的意义。目前常用的测定导热系数的方法有稳态法和非稳态法,稳态法又包括纵向热流法、径向热流法、直接电加热法和热电法等;非稳态法又包括周期热流法和瞬时热流法等方法。但目前这些方法主要针对固体导热系数的测量,对于液体,由于其导热系数较小属于不良热导体,同时在加热流体时很容易产生对流,准确测量流体的导热系数。同时目前很多测量液体导热系数的方法和装置多是对上述提及的方法进行的优化和改进,但想消除对流的影响还是较为困难。

发明内容

本发明所要解决的技术问题是针对上述现有技术的不足,而提供了一种基于对流传热测量液体导热系数的方法和装置,该方法从流体在对流传热中的边界层理论出发,利用边界层内流体的导热来测量液体的导热系数。避免了稳态法和非稳态法由于对流引起的测量导热系数有误差的问题。

技术方案

为解决现有的测量液体导热系数的方法与装置存在的上述问题,本发明采取的技术方案是:

一种流体导热系数测量装置,其特征在于,包括:

测量管,用于流过待测流体;

输送装置,用于将待测流体流过所述测量管;

电加热装置,用于加热流经所述测量管的待测流体。

一种基于上述所述流体导热系数测量装置的流体导热系数测量方法,其特征在于,包括:

S1、创造测量管内流体层流流动的流动条件,创造均匀热流密度加热的边界条件;

S2、测量所述测量管充分发展段的壁面温度和流体温度的差值测量所述的测量段的长度L,测量所述电热丝的加热功率UI,计算出被测流体导热系数的数值:

式中,为Tw,i为第i个测量点的壁温;Ti为第i个测量点的流体温度;n为测量点的个数。

对于圆管内流体的层流流动,使用二维稳态流动的连续性方程与动量方程:

连续性方程:

动量方程:

其中u、v为流速,p、ρ、ν分别为压力、密度、运动粘度。在充分发展段,在流道截面上只有沿流动方向的速度,沿径向的速度可以忽略,而在壁面处速度u=0。而压力p只是流动方向x的函数,在流道截面上压力是均匀一致的,因此

得到速度分布为:

圆管内流体的层流流动能量方程为:

在充分发展段,任取某一微元段dx,在该微元段上的能量平衡关系有:

对于恒定热流密度的条件下,对应的边界条件为:

解得温度分布为:

而管内对流传热的表面传热系数为:

因此,在圆管内层流流体流动的充分发展段时,圆管内的对流换热系数通过测量施加的热流密度,壁面温度以及流体的温度即可求得,只要测得圆管的管径和圆管内的对流换热系数,而即可求得流体的导热系数。

本发明测量流体导热系数的装置,该装置包括机械泵、注液口、储液罐、冷凝器、加热丝、绝热材料。被测液体通过注液口加入到整个装置中,当储液罐中被测液体的体积达到储液罐体积的2/3时停止注液,可保证在测量过程中液体充满管道;被测液体从储液罐流出后,流经机械泵,经机械泵的加压后,流速增加,通过控制机械泵的功率控制被测流体的流速,进而控制其雷诺数小于2300,使被测流体在测量段处于层流状态;随后被测流体流经所述的测量段,测量段的管道被电加热丝均匀缠绕并加热,造成接近均匀热流密度的条件;测量段的管道和电加热丝被绝热材料包裹,减少热损失;被测流体被电热丝加热升温,管子壁面上的热边界层有一个从零开始增长知道汇合与管子中心线的过程。当热边界层汇合于管子中心线后此后的换热强度即努塞尔数保持不变,即进入了充分发展段。在充分发展段测量一段距离下流体的温差、壁温即可求得换热强度,根据努塞尔数是常数,从而计算出流体的导热系数;测量段的长度要足够长,确保在测量时流体已经进入充分发展段;流出测量段的被测流体流经冷凝器,被冷凝器的冷却介质冷却,被测流体温度降低至测量段入口处的温度;随后被测流体流入储液罐。

测量段整体长度为L,所述循环管道的直径为d,当被测流体进入充分发展段时,沿管道布置若干测量点,所述的测量点的流体温度为Tn,壁温为Tw,n,起始测量点和结束测量点之间的距离为Lf。加热量由所述的电加热丝提供,加热量等于电加热丝的功率,即电加热丝的电压U与电流I的乘积。因此被测流体的导热系数为:

其中,h为对流换热系数,计算公式:

其中,qw为施加给所述被测流体的热流密度,计算公式为:

ΔT为被测流体和管壁的对数平均温差,计算公式为:

将式1.14~1.16带入式1.13中,得到的导热系数为:

因此在本装置中,只要测得测量段的长度,各个测点的壁面温度和流体温度以及施加的热负荷,即可求得流体的导热系数。

当各个所述测量点的壁面温度和流体温度的差值不随时间和位置发生变化时,优选方案为壁面温度和流体温度的插值的变化应控制在每小时1~2℃,不同位置的温差应控制在1℃,即可认为在所述测量点内的被测流体达到稳态以及充分发展段。

进一步地,测量方法随使用圆管进行公式推导,但此方法也适用于除圆管外的其他形状的管道。

进一步地,所述的测量段需用绝热材料包裹,绝热材料中包含有辐射热屏蔽的材料。

进一步地,所述的测量段内流体流动状态为层流。

进一步地,所述的测量段的长度足够长。

进一步地,所述的管道的管壁要尽量薄。

进一步地,所述的测量段测量时流体已经达到稳态和充分发展段。

进一步地,所述的冷凝器的形式可以但不限于板式换热器。

进一步地,所述的储液罐可加装液位计。

进一步地,所述的测量点数量优选为5-10个。

有益效果

(1)一种基于对流传热的导热系数测定方法,特别适用于粘度较大的液体,利用圆管内层流流动充分发展段的换热特性进行液体导热系数的测定,测量精度高,解决了传统稳态法容易引起对流造成测量结果误差较大的问题。

(2)本发明基于所述的测量方法设计的测量流体导热系数的装置各个部件均可根据测量需要改变参数,可以通过调节所述的机械泵的转速调节循环装置的流量大小;可以调节电加热丝的加热功率和冷凝器的冷凝功率;实现对不同温度,不同类别的流体的导热系数的测量。

(3)本发明装置简单,对被测流体的要求较低,对于测量设备要求较低。

附图说明

图1为一种基于对流传热的导热系数测量的装置示意图;

图2为导热系数测量装置的测量段示意图;

图3为导热系数测量装置的测量段截面示意图;

图中:1—机械泵;2—充液口;3—储液罐;4—冷凝器;5—绝热材料;6—电加热丝。

具体实施方式

下面结合附图对本发明作进一步的说明:

本发明基于液体导热系数测量方法设计出的液体导热系数测量装置,如图1所示,由机械泵1、充液口2、储液罐3、冷凝器4和测量段组成。

测量段是一段由电加热丝6均匀缠绕和绝热材料5包裹的管道。

机械泵1的作用是给被测流体的循环流动提供动力,同时通过调整机械泵1的功率控制流速,使得进入测量段的被测流体保持层流的流动状态;充液口2的作用是将被测流体充入测量装置中,测量完成后可将所述被测流体排出装置;储液罐3的作用是储存部分被测液体,保证被测液体可以充满管道,排除气体对测量的干扰;冷凝器4的作用是冷却被电加热丝加热的流体,保证进入测量段的被测流体入口温度相同;测量段用于测量被测流体的导热系数,电加热丝6的作用是造成均匀热流密度加热的边界条件;绝热材料5的作用一是减少电加热丝的热损失,使电加热丝6产生的热量全部用来加热管道内的流体;二是减少被测流体因为导热和辐射造成的热损失,提高测量精度。

具体测量步骤是:

S1、将待测液体通过充液口2充入测量装置中,使测量装置中的管道充满被测液体,观察储液罐3中的液位,使待测液体的体积达到储液罐3体积的2/3。

S2、开启机械泵1和冷凝器4,控制机械泵1的功率,使被侧流体的流速为0.1~0.2m/s左右。

S3、开启电加热丝6,用恒定功率加热,造成均匀热流密度的边界条件。

S4、观察若干个测量点的流体的温度和壁面温度,当所有测量点的流体温度和壁面温度的差值不再随时间发生变化,即Tw,i-Ti(1<i<n)不随时间发生变化,且所有测量点的流体温度和壁面温度的差值相同即Tw,i-Ti=Tw,j-Tj(1<i<n,1<j<n,i≠j)时,可认为在测量点之间的流体已经进入稳定状态,同时流动进入了充分发展段。记录某一时刻下测量点的流体温度和壁面温度、电加热丝的电流电压值。

S5、根据式1.17计算被测流体导热系数的数值:

本发明使用甲醇作为被测流体作为实施例,循环管道采用圆形管道,管道直径为152μm,进入测量段的流体温度为25℃,测量段长度L为7.2cm,Lf为4cm,电加热丝施加的功率为4.57W,热流密度为13.3W/cm2,甲醇的循环流量为300ml/h,壁面温度和流体温度测量点布置为5个。壁面温度的第一个测量点距离测量段进口为3cm,之后每隔1cm设置一个温度测点,壁面温度测点设置在管道外壁,使用K型热电偶进行测量;流体温度的第一个测量点距离测量段进口为3cm,之后每隔1cm设置一个温度测点,流体温度测点设置在管道内,使用铠装热电偶进行测量。

通过计算得到甲醇的雷诺数为1182.51<2300,因此甲醇的流动为层流。通过测量,当达到稳态时,各测量点的壁温平均值为62.25℃,流体温度为38.51℃。最终计算得到的甲醇传热系数的值为:

与Refprop软件计算值197.63×10-3W/(m·K)相比,相对误差仅为1.32%(若达到最佳测定条件,可进一步减少误差),因此该测试方法和测试装置具有很高的精确度。

完整详细技术资料下载
上一篇:石墨接头机器人自动装卡簧、装栓机
下一篇:塑性成形中坯料与模具界面的接触传热系数测量方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类