氟喹诺酮衍生物及作为抗菌性药物的应用
技术领域
本发明属于有机合成
技术领域
,具体是涉及一种氟喹诺酮衍生物及作为抗菌性药物的应用。背景技术
细菌抗药性的增强已成为在抗微生物化学疗法的临床实践中的严重问题。由于耐甲氧西林金黄色葡萄球菌(MRSA),万古霉素耐性链球菌(VRE),和耐青霉素的链球菌(PRSP)等耐药菌的发病率呈上升趋势,所以迫切需要研制用于感染的有效药物。
喹诺酮类抗菌主要是通过抑制细菌中的DNA回旋酶和拓扑异构酶Ⅳ,进而导致DNA双链断裂,并阻止其再连接来实现的。第1代喹诺酮类药物1962年上市,其仅具有对革兰阴性菌的适度活性且口服吸收率低。通过结构修饰,第2、3和4代喹诺酮类药物相继被开发问世,其代表性的吡哌酸、环丙沙星和莫西沙星等.与第1代相比,具有更广谱的活性,并且改善了对革兰阴性菌的活性,使抗菌谱扩大,在治疗多种感染方面具有很高的临床疗效。
氟喹诺酮类药物是以4-氧代-1,4-二氢喹啉-3-羧酸为母核结构的化学合成药物,氟喹诺酮药物具有显著的药性特点,例如广谱杀菌性、较小的用后毒副作用、药物分子结构相对简单较易合成、适中的药物价格,并且具有广谱的活性,成为国内外合成、开发和应用较快的抗菌类药物(Chang,X.;Meyer,M.T.;Liu,X.;et al.Envrion.Pollut.2010,53,1444;Andreu,V.;Blasco,C.;Pic,Y.TrAC Trends in Analytical Chemistry.2007,26,534)。
发明内容
本发明提供了一种氟喹诺酮衍生物,具有良好的抑菌效果。
本发明还提供了一种抗菌性药物,其包括所述氟喹诺酮衍生物中的一种或多种,对于试细菌都有良好的抑菌效果。
一种氟喹诺酮衍生物,具有通式(I)所示的结构或其异构体或其可药用的盐或上述结构的混合物:
其中:R1选自C1~C4的烷基;或者R1选自与其所连吡咯烷基共用一个或两个碳原子的螺环或桥环烷烃链,R1中包含1~6个碳原子;
通式(I)中,苯环上O原子择一与R2或者R3相连:与R2相连时,R2选自取代或者未取代的C2~C4亚烷基,此时R3不存在;与R3相连时,R2选自C3~C6的环烷基,R3选自C1~C3的烷基。
作为优选,通式(I)中,苯环上O原子与R2相连时,R2选自取代或者未取代的C2~C3亚烷基;与R3相连时,R2选自C3~C4的环烷基,R3选自C1~C3的烷基。
作为进一步优选,所述R3选自甲基、乙基。
作为优选,具有通式(I-a)或(I-2)所示的结构或其异构体或其可药用的盐或上述结构的混合物:
n1为1~3的自然数;作为进一步的优选,n1为1或2。
作为优选,所述盐为盐酸盐。
作为优选,R1为与其所连吡咯烷基共用两个碳原子时,该碳原子为通式(I)中NH2所连的C原子。
作为优选,R1选自C1~C3的烷基;或者R1选自与其所连吡咯烷基共用一个或两个碳原子的螺环或桥环烷烃链,R1中包含2~6个碳原子。作为进一步优选,R1为桥环(共用两个C原子)结构时,R1中包含1~4个碳原子;R1为螺环(共用一个C原子)结构时,R1中包含1~6个碳原子。
作为优选,1和2所标注的C为S、R构型、S、S构型、R、S构型、R、R构型。
作为优选,具有如下结构式所示的结构或其异构体或其可药用的盐或上述结构的混合物:
作为优选,由式(3)所示的原料与式(1)所示的原料经过取代反应、脱保护得到:
所述式(3)所示的原料可由(2)在钯碳催化剂作用下,常压氢解脱去苄氧羰基保护基得到。
式(3)所示化合物与式(1)所示化合物反应时,作为优选,式(3)所示化合物与式(1)所示化合物的摩尔比为1.5~2.5:1。作为进一步优选,所述式(3)所示化合物与式(1)所示化合物的摩尔比为2:1。反应温度为90~110℃。反应溶剂为DMSO或者DMF等。反应完成后,利用萃取剂(比如二氯甲烷,氯仿,甲苯等)萃取,然后去除溶剂得到粗品,可以利用醇类溶剂(乙醇)进行重结晶得到目标产物。
本发明利用以式(2)为起始原料,在钯碳催化剂作用下,常压氢解脱去苄氧羰基保护基,以定量的产率得到产品(3)无须纯化,分别与式(1)所示的化合物在有机溶剂(比如DMSO)中加热至90~110℃下进行取代反应得到带有Boc保护基的中间体,在该步骤中,由于保证式(1)所示原料能够反应完全,利于后面的纯化,使式(3)所示的化合物的用量过量1倍,这样得到的粗品在浓盐酸作用下脱保护形成的盐酸盐,用乙醇结晶可以得到高纯度的化合物氟喹诺酮衍生物,总收率达到55%~65%。
一种抗菌性药物,含有上述任一项所述的氟喹诺酮衍生物中的一种或多种。
作为优选,所述抗菌性药物为抑制大肠杆菌、金黄色葡萄球菌及四联球菌中的一种或多种的抗菌性药物。
本文以式(2)所示化合物为起始原料,通过氢解,偶联(或者取代)及去保护合成了多种所述氟喹诺酮衍生物,总收率50%~65%。抗菌活性测试结果显示,在6mg·mL-1浓度下,本文合成的目标化合物对大肠杆菌,金黄色葡萄球菌和四联球菌都有良好的抑制效果,其中化合物中A1和A2分别对金黄色葡萄球菌和大肠杆菌抑制效果最好,微弱于左氧氟沙星;化合物A5(实施例所示)对四联球菌的抑制直径优于左氧氟沙星.实验结果表明将3-氨基吡咯烷引入氟喹诺酮C7位形成的化合物对三种供试细菌均有良好的抑制作用,这为喹诺酮类化合物结构的进一步设计提供了一定的参考。
具体实施方式
2a和2e参照文献制备,(Bohdan,A.;Chalyk,M.V.;Butko,O.O.;Yanshyna,K.S.;Gavrilenko,T.D.;Pavel,K.M.Chem.Eur.J.2017,23,16782;Elvira,R.Z.,Alexander,Y.S.,Nadezhda,S.B.,et al.Chemistry of Heterocyclic Compounds,2019,55:676-678和Stephen,T.W.WO 2012125893,2014.)2c和2d参照文献(Hisashi,T.,Satoshi,K.,Takahiro,K.,et al..US2014142096A1,2014)制备,2b、2f、2g和2h购于上海孟善化工有限公司。
实施例:A1~A6、B1~B4的合成
将上述吡咯烷2a~2h(1.15mmol)溶于30mL甲醇中,加入钯碳催化剂(20mg,5%Pd/C),氢气条件下,常压氢化反应1h,TCL追踪反应,反应完毕后,过滤除去钯碳催化剂固体,减压去溶剂,得到定量中间体3a~3h,无需纯化直接进行下一步反应。
将化合物1a或1b(0.47mmol)溶于3mL DMSO中,加入上述中间体3a~3h(0.94mmol),升温至100℃,2h反应结束,加入H2O稀释体系,DCM(20mL×3)萃取。合并DCM干燥后旋蒸除去溶剂,得到黄色固体,将固体置于冰浴中,加入浓盐酸(5mL)后,逐渐升温至常温,反应1h点板追踪反应结束,旋蒸除去溶剂后,固体用乙醇结晶,得到化合物A1~A6和B1~B4。
反应对应关系表格:
化合物A1:130mg,淡黄色固体,67.6%.m.p.229~230℃;1H NMR(600MHz,DMSO)δ15.34(s,1H),8.93(s,1H),8.31(s,2H),7.58(dd,J=13.9,1.7Hz,1H),4.94~4.85(m,1H),4.57~4.52(m,1H),4.29(t,J=9.7Hz,2H),4.26~4.16(m,1H),3.87(dd,J=24.9,11.9Hz,1H),3.39(s,1H),1.45(dd,J=6.6,2.1Hz,3H),1.12(dd,J=9.0,4.7Hz,1H),0.90~0.83(m,1H),0.80~0.69(m,2H);13C NMR(151MHz,DMSO)δ176.1,166.3,153.0,146.0,137.4,130.4,124.9,117.3,106.6,103.6,68.2,67.9,57.2,54.8,50.7,31.7,31.7,24.8,18.0;HRMS(ESI)calcd for[(C19H21ClFN3O4-HCl)+H]+=C19H20FN3O4(M+H)+374.1511,found374.1480.
化合物A2~A6和B1~B4同样参照上述方法合成.
化合物A2:90mg,淡黄色固体,59.6%.m.p.231~232℃;1H NMR(600MHz,DMSO)δ15.37(s,1H),8.93(s,1H),8.43(s,2H),7.56(d,J=13.2Hz,1H),4.93~4.86(m,1H),4.55(d,J=10.8Hz,1H),4.34~4.22(m,1H),4.16~3.99(m,2H),3.81~3.69(m,3H),2.40~2.32(m,1H),2.17~2.07(m,1H),2.02~1.85(m,4H),1.46(t,J=6.3Hz,3H);13C NMR(151MHz,DMSO)δ176.2,166.3,146.3,130.3,125.2,125.0,116.5,106.3,104.0,103.8,68.2,67.9,55.6,55.0,45.9,31.5,24.1,18.3,17.9,15.3;HRMS(ESI)calcd for[(C20H23ClFN3O4-HCl)+H]+=C20H22FN3O4(M+H)+388.1667,found 388.1640.
化合物A3:88mg,淡黄色固体,60.2%.m.p.232~233℃;1H NMR(600MHz,DMSO)δ15.37(s,1H),8.92(s,1H),8.43(s,2H),7.56(d,J=13.9Hz,1H),4.89(s,1H),4.55(d,J=11.4Hz,1H),4.30(t,J=12.4Hz,1H),4.18(ddd,J=16.1,11.2,4.5Hz,1H),3.92(ddd,J=12.7,10.2,2.9Hz,1H),3.79(t,J=12.9Hz,1H),3.60~3.49(m,2H),1.85(d,J=9.7Hz,1H),1.65(dd,J=21.2,10.9Hz,6H),1.54(dd,J=11.6,5.9Hz,1H),1.46(dd,J=6.3,3.5Hz,3H);13C NMR(151MHz,DMSO)δ176.4,166.7,146.5,130.7,125.5,125.3,116.8,106.6,104.2,104.1,68.5,68.2,56.4,55.4,51.6,36.5,30.4,24.8,24.4,18.6,18.2;HRMS(ESI)calcd for[(C21H25ClFN3O4-HCl)+H]+=C21H24FN3O4(M+H)+402.1824,found 402.1792.
化合物A4:70mg,淡黄色固体,49.8%.m.p.233~234℃;1H NMR(600MHz,DMSO)δ15.35(s,1H),8.94(s,1H),8.25(s,2H),7.58(d,J=13.8Hz,1H),4.89(s,1H),4.55(d,J=11.2Hz,1H),4.37~4.29(m,1H),4.20~4.10(m,1H),3.87~3.71(m,2H),3.63(dd,J=20.5,9.9Hz,1H),3.52(s,1H),1.67~1.52(m,6H),1.46(d,J=6.6Hz,3H),1.34~1.21(m,4H);13C NMR(151MHz,DMSO)δ176.2,166.3,146.3,136.3,125.1,125.1,116.8,106.4,103.9,103.7,68.1,67.9,57.9,56.6,54.9,43.3,33.5,28.5,25.4,22.5,18.1,17.9;HRMS(ESI)calcd for[(C22H27ClFN3O4-HCl)+H]+=C22H26FN3O4(M+H)+416.1980,found 416.1945.
化合物A5:66mg,淡黄色固体,58.8%.m.p.215~216℃;1H NMR(600MHz,DMSO)δ15.25(s,1H),8.99(s,1H),8.62(s,2H),7.63(d,J=12.8Hz,1H),4.94(d,J=6.7Hz,1H),4.61(d,J=11.3Hz,1H),4.40(d,J=11.3Hz,1H),3.91(dd,J=53.9,10.3Hz,1H),3.67(d,J=10.2Hz,1H),3.58(s,1H),3.55~3.46(m,1H),2.98(d,J=3.3Hz,1H),2.36(dd,J=23.2,15.4Hz,1H),2.16(dd,J=13.7,8.0Hz,2H),1.68(dd,J=21.1,12.0Hz,1H),1.47(d,J=6.5Hz,3H),1.23(s,2H);13C NMR(151MHz,DMSO)δ176.5,166.7,146.6,130.6,130.6,125.6,125.3,116.8,106.7,104.3,68.5,68.2,55.3,46.2,31.8,24.4,18.6,18.2,15.6;HRMS(ESI)calcd for[(C19H21ClFN3 O 4-HCl)+H]+=C19H20FN3 O 4(M+H)+374.1511,found374.1485.
化合物A6:110mg,淡黄色固体,65.6%.m.p.228~229℃;1H NMR(600MHz,DMSO)δ8.91(s,1H),7.53(d,J=13.4Hz,1H),4.87(d,J=6.5Hz,1H),4.54(d,J=11.3Hz,1H),4.30(d,J=11.3Hz,1H),3.82(dt,J=17.5,8.2Hz,1H),3.67~3.44(m,3H),2.12(s,1H),1.96(td,J=14.0,7.0Hz,1H),1.78~1.66(m,3H),1.64~1.58(m,1H),1.42(dd,J=20.8,6.7Hz,4H);13C NMR(151MHz,DMSO)δ176.6,166.7,146.4,139.3,129.8 125.2,119.1,106.9,103.9,103.7,68.5,59.5,56.5,56.3,55.6,55.4,41.1,28.5,19.1,18.2;HRMS(ESI)calcd for[(C20H23ClFN3O4-HCl)+H]+=C20H22FN3O4(M+H)+388.1667,found 388.1635.
化合物B1:80mg,棕红色固体,60.1%.m.p.215~216℃;1H NMR(600MHz,DMSO)δ15.12(s,1H),8.66(s,1H),8.51(s,2H),7.69(d,J=11.8Hz,1H),4.14(s,1H),3.88(dd,J=132.3,23.9Hz,5H),3.54(s,3H),2.16(s,1H),1.92(s,5H),1.17(s,1H),1.06(d,J=32.1Hz,2H),0.91(s,1H);13C NMR(151MHz,DMSO)δ176.0,166.0,163.6,152.0,150.4,141.0,136.3,134.4,117.6,106.3,61.6,59.5,55.5,53.4,45.9,40.8,30.7,24.0,15.2,9.5,8.6;HRMS(ESI)calcd for[(C21H25ClFN3O4-HCl)+H)+=C21H24FN3O4(M+H)+402.1824,found 402.1789.
化合物B2:60mg,淡黄色固体,55.5%.m.p.235~236℃;1H NMR(600MHz,DMSO)δ15.12(s,1H),8.67(s,1H),7.70(d,J=13.9Hz,1H),4.17~4.12(m,1H),4.02(dd,J=12.3,7.0Hz,1H),3.84(dd,J=10.6,4.2Hz,1H),3.68~3.59(m,3H),3.57(s,3H),1.65~1.45(m,8H),1.41~1.26(m,4H),1.13(dd,J=12.6,5.7Hz,1H),1.08~1.00(m,2H),1.01~0.92(m,1H);13C NMR(151MHz,DMSO)δ176.2,166.0,152.2,150.6,141.3,136.6,134.6,117.9,106.9,106.6,62.1,57.8,56.5,53.7,43.4,40.8,40.1,33.5,28.5,25.5,22.5,9.3,8.9;HRMS(ESI)calcd for[(C23H29ClFN3O4-HCl)+H]+=C23H28FN3O4(M+H)+430.2064,found430.2096.
化合物B3:55mg,淡黄色固体,58.9%.m.p.212~213℃;1H NMR(600MHz,DMSO)δ15.14(s,1H),8.66(s,1H),8.39(s,2H),7.68(d,J=13.9Hz,1H),4.18~4.11(m,1H),4.04(dd,J=11.7,4.8Hz,1H),3.90(s,1H),3.75(dd,J=9.0,4.3Hz,2H),3.66(d,J=11.9Hz,1H),3.56(s,3H),2.43~2.32(m,1H),1.59(dt,J=13.8,6.9Hz,1H),1.51~1.42(m,1H),1.26~1.08(m,3H),1.01(d,J=7.3Hz,1H),0.98(t,J=7.3Hz,3H),0.88(dd,J=10.6,6.0Hz,1H);13C NMR(151MHz,DMSO)δ176.4,166.3,152.3,150.8,141.3,137.0,135.0,117.9,107.1,106.7,62.4,55.9,53.9,51.9,42.6,41.1,19.8,12.9,10.1,8.8;HRMS(ESI)calcd for[(C20H25ClFN3O4-HCl)+H]+=C20H24FN3O4(M+H)+390.1824,found 390.1785.
化合物B4:102mg,淡黄色固体,55.6%.m.p.223~224℃;1H NMR(600MHz,DMSO)δ8.73(s,2H),8.64(s,1H),7.62(d,J=13.7Hz,1H),4.14(s,1H),3.89(t,J=7.5Hz,1H),3.87~3.82(m,1H),3.75(dd,J=10.3,6.0Hz,1H),3.59(s,3H),3.54(s,1H),3.49~3.45(m,1H),2.33(d,J=4.8Hz,1H),1.79(dd,J=12.6,6.1Hz,1H),1.42~1.33(m,1H),1.14(s,1H),1.08~1.00(m,2H),0.94(t,J=7.3Hz,5H);13C NMR(151MHz,DMSO)δ176.1,165.9,154.0,152.4,150.4,141.8,136.2,134.4,118.1,106.5,62.0,54.5,54.1,53.2,43.5,40.8,23.5,12.0,9.3,8.8;HRMS(ESI)calcd for[(C20H25ClFN3O4-HCl)+H]+=C20H24FN3O4(M+H)+390.1824,found 390.1798.
抗菌活性测试
为了评估氟喹诺酮衍生物的抗菌活性,本发明采用滤纸片法,以左氧氟沙星和DMSO作为阳性对照和阴性对照,测定了合成的10种目标化合物对大肠杆菌(Escherichiacoli)、金黄色葡萄球菌(Staphylococcus aureus)及四联球菌(Micrococcus tetragenus)的抑制活性,测试结果如表1所示:
表1目标化合物的抗菌活性
结果显示,在6mg·mL-1浓度下,本发明合成的10种目标化合物对3种供试细菌均有良好的抑制活性。目标化合物对大肠杆菌的抑制直径在16.1mm~25.9mm,其中A2对大肠杆菌抑制活性最高,抑菌半径达到左氧氟沙星的82.5%;目标化合物对金黄色葡萄球菌的抑制直径在13.9mm~24.0mm,其中A1对金黄色葡萄球菌的抑制活性最高,抑菌半径达到左氧氟沙星的81.6%;目标化合物对四联球菌的抑制直径在14.2mm~24.8mm,其中A5抑菌半径超过左氧氟沙星,抑菌半径为左氧氟沙星的119.3%。化合物A2与B1的C7位取代基相同,并且对三种供试细菌的抑制作用基本相同;化合物A4与B2的C7位的取代基相同,但是A4对金黄色葡萄球菌和四联球菌的抑制活性明显高于B2,对大肠杆菌的抑制活性无明显差异。总体而言,本发明所合成的10种化合物对三种供试细菌均有抑制活性,并且以原料1a为前体合成的六种化合物的抗菌活性略高于以原料1b为前体合成的四种化合物。