一种活性酯类化合物脱羧生成c-s键的方法
技术领域
本发明属于有机化学领域,具体地,涉及一种活性酯类化合物脱羧生成C-S键的方法。
背景技术
C-S键广泛地存在于许多常见的生物活性物质、天然产物和功能材料中。特别是在药物化学领域,含硫有机化合物在癌症、糖尿病、阿尔茨海默病和艾滋病等疾病类型中起着重要作用。因此,在合成化学中,如何方便、高效地构建C-S键,具有重要意义。
在过去的几十年里,人们致力于利用过渡金属催化来构建C-S键,包括芳基卤化物或硼酸盐与硫醇或二硫醚的交叉偶合,以及S-S和S-H键与炔三键的加成反应。近年来,光氧化还原催化已成为有机合成领域的一种有力而实用的策略,利用这种策略构建C-S键受到了广泛的关注。在现有技术中,通常采用光催化剂催化芳基卤化物与硫醇或硫酚反应,从而构建C-S键。Procopiou等人在两个200w钨丝灯泡的照射下,利用硫醇成功构建了C-S键。然而,在现有的构建C-S键的脱羧方法中,硫源仅限于硫醇或硫酚。
发明内容
本发明的目的在于提供一种活性酯类化合物脱羧生成C-S键的方法,以提供一种新的构建C-S键的方法。
根据本发明的一个方面,提供一种活性酯类化合物脱羧生成C-S键的方法:在光照条件下,使通式为Ra-COONPhth的活性酯和通式为Rb-S-S-Rc的二硫醚在由含有有机碱的有机溶剂提供的液体环境中、在光催化剂的催化下发生如下反应:Ra-COONPhth+Rb-S-S-Rc→Ra-S-Rb,在上式中,各原料的当量比满足:Ra-COONPhth:Rb-S-S-Rc:有机碱=0.5–2:1–2.5:1–2.5,在Ra-S-Rb中,Ra与S原子之间通过C-S键合;光催化剂为Ru(bpy)2Cl2·6H2O;Rb和Rc独立选自烃基、任选被取代烃基、多元杂环或任选被取代多元杂环中的一种,Rb和Rc皆为具有芳香性的基团。本文中“任选被取代烃基”指的是烃基的碳链上的任意一个碳原子上的至少一个氢原子被其他非氢的基团取代。本文中“任意被取代多元杂环”指的是多元杂环中成环的碳原子上的至少一个氢原子被其他非氢的基团取代。
优选地,Rb或/和Rc选自芳基或任选被取代芳基。
优选地,任选被取代芳基上的取代基选自甲基、甲氧基、醚基或卤素原子中的一种或多种。
优选地,卤素原子选自F原子、Cl原子或Br原子中的一种或多种。
优选地,Rb或/和Rc选自多元杂环或任选被取代多元杂环;多元杂环中的每个杂原子独立地选自N原子或S原子;任选被取代多元杂环中的每个杂原子独立地选自N原子或S原子。
优选地,多元杂环为吡啶环,任选被取代多元杂环为任选被取代吡啶环。
优选地,有机溶剂选自二甲基乙酰胺或乙腈中的一种。
优选地,有机溶剂碱选自N,N-二异丙基乙胺或三乙基胺中的一种。
优选地,光照条件为蓝光光照。
优选地,原料的当量比为:所述Ra-COONPhth:Rb-S-S-Rc:有机碱=1:2:2。
利用烷基活性酯具备的容易制备、反应活性较高的优点,本发明以具有Ra-COONPhth结构的活性酯构建C-S键的前体,使其在光催化剂Ru(bpy)2Cl2·6H2O的催化下,成功地和二硫化物发生脱羧偶合反应,生成具有C-S键的化合物。可选范围广泛的活性酯和二硫化物,都是脱羧偶联反应的有效参与者。通过上述反应,能够制得结构多样的烷基硫化物。
通过对反应涉及的有机溶剂、有机碱或光照条件进行进一步的限定,从而有效地提高了上述反应目标产物的得率。而且,上述反应所需的最佳反应条件都较为温和,能够在常温常压下进行,对反应器械的要求并不苛刻,同时,最佳反应条件对各种不同的反应物也具有较高的普适性。上述优点使得本发明提供的活性酯类化合物脱羧生成C-S键的方法有望推广应用于实际生产中。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。
在以下实施例中,采用19F核磁共振波谱法、以氟苯为内标物测定产率。
实施例1
本实施例以以下对照处理方式为依据设置若干处理组,除特别的变量说明外,每个处理组的处理方式均与对照处理方式严格保持一致。反应式如下:
在对照处理所采用的反应物中,以作为活性酯,以作为硫源。
对照处理方式:将0.1mmol的0.2mmol的0.2mmol的N,N-二异丙基乙胺加入到1mL的二甲基乙酰胺(DMAc)中,按照1mol%的添加量向反应物中加入光催化剂Ru(bpy)2Cl2·6H2O;在室温下,提供蓝光光照,反应20小时。
各处理组的变量设置及目标产物的产量如表1所示。
表1本实施例各处理组设置方式对目标产物得率的影响
处理1的实验设置方式与对照处理保持严格一致,由处理1制备的目标产物的产品得率高达99%以上。对比处理1–处理7的产品得率可知,有机溶剂和有机碱的选择会对产品得率会产生重要的影响。针对于有机溶剂的选择:处理3采用CH3CN替代DMAc,也能够使脱羧偶合反应顺利进行,然而处理3对应的产物得率显著低于处理1;处理2和处理4分别采用DCM、THF替代DMAc进行脱羧偶合反应,反应几乎完全被抑制,几乎得不到目标产物。另一方面,针对有机碱的选择:处理5采用以NEt3替代DIPEA,也能够使脱羧偶合反应顺利进行,然而处理5对应的产物得率显著低于处理1;处理6和处理7分别采用HNEt2、Cs2CO3替代DIPEA进行脱羧偶合反应,而处理10则没有向反应体系中添加有机碱,上述三组处理组的脱羧偶合反应几乎完全被抑制,几乎得不到目标产物。表1中的各处理组的产品得率反映了光催化剂、光照条件、有机碱和有机溶剂都是本实施例的脱羧偶合反应的重要影响因素。
实施例2
本实施例选择多种通式为Ra-COONPhth的活性酯和通式为的二硫化物作为反应物(在本实施例中,X为C原子或者N原子),按照以下步骤进行脱羧偶合反应:
将0.2mmol的Ra-COONPhth、0.4mmol的0.4mmol的DIPEA加入到1mL的DMAc中,按照1mol%的添加量向反应物中加入光催化剂Ru(bpy)2Cl2·6H2O;在室温下,提供蓝光光照,反应20小时。反应式如下:
本实施例所采用的各组反应物及其对应的目标产物如表2所示。
表2反应物及其对应的目标产物
反应结束后,统计各种目标产物的产物得率,如表3所示。
根据表2和表3,通式为Ra-COONPhth的多种氧化还原活性酯成功地与芳香族二硫化物反应,制得的目标产物的产率能够达到中等甚至较高的产率。反应体系表现出良好的官能团相容性,以芳基酮类活性酯(对应产物1、产物2)、烷基酮类活性酯(对应产物4)、酰胺类活性酯(对应产物5)和双酯型类活性酯(对应产物7)作为反应物,均表现出良好的耐受性。特别值得注意的是,采用具有环烯烃结构的反应物参与上述反应,反应结束后,环烯烃结构(对应产物9)仍然保持完整,并且得到了高收率的预期产物。在许多药物中,杂环结构单元对药物的生理活性起着重要的作用。在该体系中,分别以具有噻吩环结构、吡啶环结构、四氢呋喃环结构的反应物参与反应,均表现出良好的耐受性,获得的目标产物(分别依次对应产物3、产物8、产物6)具有较高的产率。此外,上述方法还可用于γ-酪氨酸酸(对应产物7)和松香酸(对应产物14)等天然产物的后期改性。
发明人采用作为活性酯,根据上述反应式上设定的参数与用量参与反应,反应进展良好,所得到的的目标产物(对应产物12)的得率能够达到89%。进一步地,发明人在克的量级进行了上述反应,反应的进展以及产率仍然良好,所得到的目标产物的得率能够达到79%。从而证明了以上述方法构建C-S键具有良好的实用性和可扩展性。
表3本实施例制备的目标产物的产品得率
产物编号
产品得率
产物编号
产品得率
产物编号
产品得率
1
81%
6
70%
11
59%
2
92%
7
82%
12
89%
3
68%
8
75%
13
64%
4
92%
9
89%
14
32%
5
87%
10
96%
实施例3
本实施例以通式为的氨基酸类活性酯和作为反应物,按照以下步骤进行脱羧偶合反应:
将0.2mmol的0.4mmol的0.4mmol的DIPEA加入到1mL的DMAc中,按照1mol%的添加量向反应物中加入光催化剂Ru(bpy)2Cl2·6H2O;在室温下,提供蓝光光照,反应20小时。反应式如下:
本实施例所采用的各组反应物及其对应的目标产物和产物得率如表4所示。本实施例的所有参试氨基酸类活性酯都能够通过进行上述反应制得目标产物,并且目标产物的产率能够达到中等至优良的等级。如表4所示,苯丙氨酸(对应产物15)、亮氨酸(对应产物16)、缬氨酸(对应产物17)、丙氨酸(对应产物18)、蛋氨酸(对应产物19)、脯氨酸(对应产物20)、色氨酸(对应产物21)等多种天然和非天然氨基酸都可作为上述反应的适宜底物。通过对比产物18和产物24的产物得率可知,在作为反应物的活性酯中,以叔丁基氧羰基(-Boc)代替苄氧羰基(-Cbz)作为护氮基团,有利于提高产物得率。
表4本实施例所采用的活性酯种类及其对应的目标产物和产物得率
实施例4
本实施例选择多种通式为Ra-COONPhth的活性酯和通式为的二硫化物作为反应物,按照以下步骤进行脱羧偶合反应:
将0.2mmol的Ra-COONPhth、0.4mmol的0.4mmol的DIPEA加入到1mL的DMAc中,按照1mol%的添加量向反应物中加入光催化剂Ru(bpy)2Cl2·6H2O;在室温下,提供蓝光光照,反应20小时。反应式如下:
。
本实施例所采用的各组反应物及其对应的目标产物如表5所示。
表5反应物及其对应的目标产物
反应结束后,统计各种目标产物的产物得率,如表6所示。本实施例以二硫醚作为反应物与活性酯进行脱羧偶合反应。在产物25和产物28中,邻位取代的芳基与氟基团发生交联,因此能够达到较高的目标产物得率,形成高收益的C-S键。对比产物26和产物29的产率、对比产物27和产物30的产率可知,具有供电子基团(Me,OMe)的芳基二硫化物与氨基酸活性酯的偶合反应效率明显更高。此外,噻吩、吡啶等杂环类二硫化物反应平稳,产物收率中等(对应产物31、产物32)。值得注意的是,可以以二烷基硫化物作为反应物参与上述方应构建C-S键(对应产物34),虽然偶合反应效率不高,但在现有技术中并未有采用光氧化还原法实现二烷基硫化物的脱羧偶合反应被报道。
表6本实施例制备的目标产物的产品得率
产物编号
产品得率
产物编号
产品得率
25
89%
30
70%
26
45%
31
36%
27
38%
32
77%
28
94%
33
24%
29
83%
34
31%
以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。
- 上一篇:石墨接头机器人自动装卡簧、装栓机
- 下一篇:一种双体系一锅法泰妙菌素的制备方法