一种无牺牲剂的光催化产双氧水方法
技术领域
本发明属于光催化
技术领域
,具体涉及一种无牺牲剂的光催化产双氧水方法。背景技术
双氧水作为一种常见的环保氧化剂,已广泛应用于许多领域,例如废水处理和消毒,有机合成以及纸浆和造纸工业等。目前,双氧水的全球产量已达到每年约550万吨。近年来,双氧水更是成为了化石燃料最具有前途的替代品之一,引起了越来越多的关注。由于化石燃料可以在小型无膜的燃料电池中用作易于处理的清洁液体燃料。因此,迫切需要以可持续性的方式大规模生产双氧水。当前,商业上的双氧水通常是通过传统的蒽醌法生产的。然而,这种方法需要复杂的大型设备、贵金属催化剂和氢源,而且在多步加氢和氧化反应中的能耗高,以及在蒽醌氧化过程中会产生大量的废水、废气和固体废物。此外,此方法所产生的双氧水在使用前还必须进行萃取和纯化。此外,电催化水氧化法为原位生产双氧水提供了一个有效的途径,其具有操作安全、可实现更高的电流密度、合成的过氧化氢溶液无杂质、纯度高等优点。但电化学法的转化率和选择性仍不理想,目前缺乏具有高催化性能且低成本的电催化剂,还无法取代现行蒽醌法制备双氧水的工艺。
光催化技术是一种利用太阳能、氧气和水进行绿色可持续性合成双氧水的方法。此外,它还可以实现双氧水的原位应用,迄今为止,已经研究了多种用于合成双氧水的光催化剂,其中,TiO2和石墨氮化碳g-C3N4是研究得最深入的两种材料。例如中国专利文献CN107126971A公开了一种用于光催化生产H2O2的CoP/g-C3N4复合光催化剂的制备方法,其中所述方法使用乙醇作为牺牲剂。最近,还涌现了其他基于金属的半导体用作双氧水合成的光催化剂,例如中国专利文献CN 103170368 B报道了铬、银或铟离子与三聚硫氰酸组成的有机配聚物光催化剂,在用甲醇作牺牲剂的体系中光催化还原O2产H2O2。然而,现有的光催化剂材料强烈依赖于空穴牺牲剂,这导致双氧水的合成成本急剧增加,且不方便分离双氧水。此外,现在用于合成双氧水的光催化剂大多需要紫外光辅助。如中国文献CN 111517276A报道了利用TiO2和贵金属纳米粒子助催化剂的复合物光催化制备H2O2,该方法需要紫外辐射来合成双氧水。由于紫外线仅占太阳光谱的4%,利用太阳能的关键是最大程度的利用可见光和红外光。因此,在纯水中利用可见光光催化合成双氧水具有重要的意义。
水热碳(HTCC)是通过对生物质(杂草,牛粪,大米,向日葵,纤维素,葡萄糖等)进行水热处理后而获得的一种碳基材料。有研究发现,HTCC具有半导体特性,可用于光催化。这是由于HTCC中呋喃的sp2共轭杂化结构衍生而来的。在可见光照射下,它可以充当光催化剂,产生电子-空穴对用于氧化还原反应。HTTC作为一种不含金属的材料,在环境治理中已得到了应用,包括光催化还原Cr(VI),染料的降解和消毒等。但目前尚未有利用水热碳在纯水中光催化生产双氧水的报道。
发明内容
为了克服上述现有技术的不足,本发明提出了一种无牺牲剂的光催化产双氧水方法,利用水热碳材料作为光催化剂,原位催化水产生H2O2,不需要使用任何牺牲剂,具有极大的应用前景。
为了实现上述目的,本发明所采用的技术方案是:
一种无牺牲剂的光催化产双氧水方法,具体为:将水热碳分散于水中形成悬浮液,往悬浮液中通入氧气并使氧气保持在饱和状态,然后在一定温度下用可见光源进行照射,即可产生双氧水。
本发明以水热碳材料作为光催化剂,然后在饱和氧气状态中,通过可见光源实现在纯水中原位产H2O2,可实现高H2O2产率(1.16mmol g-1h-1)。同时,由于水热碳廉价且易于制备,能够在纯净水中实现产H2O2代替液体燃料,具有巨大的经济价值和广阔的应用前景。
优选地,所述水热碳的制备方法为:将生物质溶于水后加入硫酸,然后置于200℃下水热反应12h,最后经离心、洗涤和干燥制备得到。
本发明采用不同生物质作为反应前驱体,制备出水热碳材料,制备工艺简单、操作快捷,对设备和工艺条件无苛刻要求,容易操作,重复性好,适合大批量生产。同时,本发明还可以对生物质进行资源化利用,利用水热法把生物质转化成为具有光催化性质的新型高效光催化剂,用于在纯水中由可见光驱动产双氧水,具有优良的应用前景。
优选地,所述生物质与水的料液为0.5-1.0g:15-25mL,硫酸的终浓度为0.1-0.4mol/L。具体地,所述生物质与水的料液为0.8g:20mL,硫酸终浓度为0.2mol/L,所述硫酸为98%硫酸。
优选地,所述生物质包括但不限于葡萄糖、蔗糖、淀粉、纤维素和纸板。
优选地,所述水热碳与水的料液为1mg:3-8mL。具体地,水热碳与水的料液为1mg:5mL。
优选地,通入氧气的流速为140-160mL/min。具体地,通入氧气的流速为150mL/min。
优选地,所述温度为20±0.1℃。
优选地,所述可见光源为包含有420nm截止滤光片的300W氙灯。
与现有技术相比,本发明的有益效果是:
本发明提供了一种无牺牲剂的光催化产双氧水方法,利用水热碳作为光催化剂,将其分散在水中后通入氧气并使氧气保持在饱和状态,再通过可见光源照射即可得到双氧水,本发明方法简单,相比于传统的蒽醌法,不需要大型设备、贵金属催化剂和氢源;相比于电催化原位产双氧水法,不需要用到电解质;相比于现有的光催化方法,不需要醇类等牺牲剂,在纯水中即可制备双氧水,有利于双氧水的后期分离与收集。本发明能够在纯净水中实现产H2O2代替液体燃料,具有巨大的经济价值和广阔的应用前景。
附图说明
图1为由不同生物质制备得到的光催化剂材料;
图2为不同光催化剂材料在可见光照射下催化水溶液合成双氧水的速率(a)及产量(b);
图3为不同光催化剂材料在不同条件下催化水溶液合成双氧水的产量(a)以及电子顺磁共振光谱(b)。
具体实施方式
下面对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。
下述实施例中的实验方法,如无特殊说明,均为常规方法,下述实施例中所用的试验材料,如无特殊说明,均为可通过常规的商业途径购买得到的。
实施例1制备水热碳材料
(1)取5个烧杯,分别称取0.8g葡萄糖、蔗糖、淀粉、纤维素和纸板于烧杯中,并分别加入20mL去离子水,室温下用120W超声波超声15min,再以700r/min的转速搅拌15min,再向五个混合溶液中加入0.22mL的98%硫酸使硫酸的终浓度为0.2M,得到五个混合溶液;
(2)将步骤(1)得到的五个混合溶液分别转移至25mL聚四氟乙烯内衬的不锈钢水热反应釜中,然后置于烘箱中在200℃条件下水热反应12h;
(3)反应结束后,取出步骤(2)得到的五个黑色产物,在10000rpm下离心5min,再用蒸馏水和99.8%乙醇交替洗涤四次;
(4)最后将步骤(3)的五个样品在60℃真空干燥箱内干燥12h,取出即得到水热碳材料。
如图1所示为实施例1不同生物质制备得到的水热碳图片。
实施例2无牺牲剂的光催化产双氧水方法
以实施例1制得的水热碳作为光催化剂(以g-C3N4光催化剂为对照),催化水溶液合成双氧水,具体包括以下步骤:
(1)取六个烧杯,分别称取10mg实施例1制备得到的不同水热碳光催化剂和g-C3N4光催化剂于烧杯中,并分别加入50mL去离子水,用120W超声波超声15min使得均匀分散,制备得到六个悬浮液;
(2)将步骤(1)的六个悬浮液以700r/min的转速搅拌的同时以200mL/min的通气量通30min氧气;
(3)将步骤(2)的六个悬浮液分别转移到水循环夹套的100mL圆柱形小室中(北京中教金源型号为CEL-SPH2N-S的双通道催化反应系统),持续曝气使悬浮液保持在饱和氧气状态,并通过冷却水循环机(北京长流科学仪器有限公司,型号为LX-300)的温度控制系统将悬浮液的温度保持在20±0.1℃;
(4)配备包含有420nm截止滤光片的300W氙灯用作可见光源,对步骤(3)的六个悬浮液进行辐照,在实验期间以指定的时间间隔(10min、20min、30min、40min、50min、60min)收集样品;
(5)步骤(4)收集的样品离心后,用经典的I3 -方法测定双氧水的浓度。具体地,将上清液以1∶1∶1的体积比与邻苯二甲酸(0.1M)和碘化钾(0.4M)混合,完全显色(30分钟)后,使用UV-Vis分光光度计在355nm处测量吸光度。根据工作曲线计算其浓度。
结果如图2所示,所有水热碳均显示出比g-C3N4更高的活性。其中,用纤维素制备的水热碳观察到最高的H2O2合成速率,可以达到1.16mmol g-1h-1;而且纸板也可用于制备水热碳来光催化合成H2O2。
实施例3水热碳光催化水溶液合成双氧水的机理
(1)取五个烧杯,分别称取10mg实施例1制备得到的纤维素水热碳光催化剂于烧杯中,并分别加入20mL去离子水,超声15min使得均匀分散,制备得到五个悬浮液;
(2)将步骤(1)的五个悬浮液分别转移到装有水循环夹套的100mL圆柱形小室中,通过水循环温度控制系统将悬浮液的温度保持在20±0.1℃;
(3)分别对步骤(2)的五个悬浮液进行以下处理:
搅拌(700r/min)、通氧气(200mL/min)、通氮气(200mL/min)、加入糠醇牺牲剂(0.5M)、加入对苯醌牺牲剂(0.5M);
(4)配备包含有420nm截止滤光片的300W氙灯用作可见光源,对步骤(3)的五个悬浮液进行辐照,在实验期间以指定的时间间隔(10min、20min、30min、40min、50min、60min)收集样品;
(5)步骤(4)收集的样品离心后,用经典的I3 -方法测定双氧水的浓度。具体地,将上清液以1∶1∶1的体积比与邻苯二甲酸(0.1M)和碘化钾(0.4M)混合,完全显色(30分钟)后,使用UV-Vis分光光度计在355nm处测量吸光度。根据工作曲线计算其产双氧水速率。
结果如图3所示,在光催化作用下,纤维素水热碳表现出优异的H2O2产率,而且是在纯水且不含牺牲剂的条件下就能具有很高的H2O2合成率。其中,通氧气产H2O2的速率约为通氮气的6倍。同时,通过添加自由基牺牲剂的方法检测反应中产生的自由基种类,糠醇为1O2的牺牲剂,对苯醌为·O2 -的牺牲剂。结果显示对苯醌明显抑制了纤维素水热碳产H2O2的过程。此外,通过电子顺磁共振(EPR)检测进一步验证自由基的机理。具体方法为:称取10mg催化剂均匀分散于50mL超纯水中,将混合溶液置于可见光下照射5分钟后取样,然后采用德国布鲁克公司型号为A300电子顺磁共振波谱仪,以DMPO(5,5-二甲基-1-吡咯啉-N-氧化物)作为·O2 -的捕获剂进行EPR测试。结果显示,·O2 -为H2O2合成的主要活性物质。
以上对本发明的实施方式作了详细说明,但本发明不限于所描述的实施方式。对于本领域的技术人员而言,在不脱离本发明原理和精神的情况下,对这些实施方式进行多种变化、修改、替换和变型,仍落入本发明的保护范围内。