High-strength platinum-based electrical contact material and preparation method thereof
1. A high-strength platinum-based electrical contact material is characterized by comprising the following components in percentage by mass:
Au 1~5%;
Ni 1~5%;
the balance being Pt.
2. A high-strength platinum-based electrical contact material according to claim 1, wherein: the Au is gold particles; the Ni is nickel particles; the Pt is a platinum sheet.
3. A method for preparing a high-strength platinum-based electrical contact material according to claim 1 or 2, comprising the steps of:
1) proportioning, namely, by mass, 1-5% of Au, 1-5% of Ni and the balance of Pt, wherein the total mass of the components is 100%, and respectively weighing platinum sheets, nickel particles and gold particles; preparing an alloy mixed material;
2) smelting, namely placing the alloy mixture obtained in the step 1) into a crucible of a smelting furnace, vacuumizing the smelting furnace, and obtaining an alloy ingot at the temperature of 1800-2000 ℃;
3) homogenizing heat treatment, namely putting the alloy cast ingot obtained in the step 2) into an alumina crucible, wrapping the alloy cast ingot with alumina powder, covering carbon powder with the coated alloy cast ingot, placing the coated alloy cast ingot in a muffle furnace at 900-1000 ℃ for heat preservation for 1-3 h, and quickly taking out the coated alloy cast ingot and sending the coated alloy cast ingot to cold water for quenching treatment;
4) rolling and rolling heat treatment, namely rolling the alloy cast ingot obtained in the step 3) on a cold rolling mill, wherein the pass deformation is 2-5%, and when the rolling deformation reaches 70-90%, carrying out homogenization heat treatment in a muffle furnace at 900-1000 ℃ for 1-3 h until the alloy cast ingot is rolledThen carrying out homogenization heat treatment again at 900-1000 ℃ for 1-3 h to obtain an alloy bar;
5) drawing the wire, and obtaining the product in the step 4)The alloy bar is drawn into a wire on a wire drawing machine, the deformation of the wire in the drawing pass is 5-10%, and the wire is drawn toThe total deformation of the alloy wire is 85.8-93.3%;
6) heat treatment of the wire finished product, namely the wire obtained in the step 5)The alloy wire is subjected to vacuum annealing treatment for 1-5 h at 300-500 ℃ to obtain the high-strength platinum-based alloy wire which is used as an electrical contact material.
4. The method of preparing a high-strength platinum-based electrical contact material according to claim 3, wherein: the temperature of 1800-2000 ℃ in the step 2) is 1 multiplied by 10-3Smelting in a smelting furnace in Pa vacuum.
5. The method of preparing a high-strength platinum-based electrical contact material according to claim 3, wherein: and in the step 1), nickel particles and gold particles are wrapped by a platinum sheet to obtain an alloy mixed material.
6. The method of preparing a high-strength platinum-based electrical contact material according to claim 3, wherein: and smelting the mixed material in the step 2) for 3-4 times.
7. The method of preparing a high-strength platinum-based electrical contact material according to claim 3, wherein: and in the step 3), the steel plate is placed in a muffle furnace at 900 ℃ for heat preservation for 1h, and then is rapidly taken out and sent to cold water for quenching treatment.
Background
The electric contact material is used as a functional material for realizing electric energy transmission and signal transmission, is mainly applied to electronic components such as various switches, relays, controllers, micromotors and the like, and comprises contacts, electric brushes, slip rings, commutator segments and the like. The conductive slip ring is an important electromechanical component of a satellite-borne product, and the performance, the quality and the service life of brush wires in the conductive slip ring directly influence the use of the product. With the development of modern industry, higher requirements are continuously put on the performance of the electric contact material. In order to ensure the working reliability of aerospace and precision instruments and meters, the electric brush material needs to have larger elastic modulus, lower resistivity, good chemical stability and processability, and ultrahigh wear resistance.
The current brush materials such as gold alloy brush wires have excellent conductivity, but the low hardness and the low recrystallization temperature thereof cause excessive mechanical wear, the comprehensive performance is not perfect, and the service life of the product is seriously influenced. The platinum alloy has high melting point, high boiling point and higher strength, and has the performances of fusion welding resistance, arc burning resistance and the like when being used as an electric contact material; meanwhile, the platinum and the gold have the lowest and most stable contact resistance, so that the low and stable contact resistance can be obtained, and the performance requirement of the conductive slip ring brush material is met. Because the current materials cannot meet the performance requirements at the same time, research and development of a novel electric contact material with good wear resistance, moderate resistivity and excellent comprehensive performance are a problem to be solved urgently.
AuNi9 alloy is widely used as a gold-based noble metal electric contact material in a spacecraft system because of good conductivity, but has poor wear resistance.
Disclosure of Invention
The invention provides a high-strength platinum-based electric contact material and a preparation method thereof.
The scheme of the invention is as follows:
a high-strength platinum-based electrical contact material comprises the following components in percentage by mass:
Au 1~5%;
Ni 1~5%;
the balance being Pt.
As a preferred technical scheme, the Au is gold particles; the Ni is nickel particles; the Pt is a platinum sheet.
The invention also discloses a method for preparing the high-strength platinum-based electric contact material, which comprises the following steps:
1) proportioning, namely, by mass, 1-5% of Au, 1-5% of Ni and the balance of Pt, wherein the total mass of the components is 100%, and respectively weighing platinum sheets, nickel particles and gold particles; preparing an alloy mixed material;
2) smelting, namely placing the alloy mixture obtained in the step 1) into a crucible of a smelting furnace, vacuumizing the smelting furnace, and obtaining an alloy ingot at the temperature of 1800-2000 ℃;
3) homogenizing heat treatment, namely putting the alloy cast ingot obtained in the step 2) into an alumina crucible, wrapping the alloy cast ingot with alumina powder, covering carbon powder with the coated alloy cast ingot, placing the coated alloy cast ingot in a muffle furnace at 900-1000 ℃ for heat preservation for 1-3 h, and quickly taking out the coated alloy cast ingot and sending the coated alloy cast ingot to cold water for quenching treatment; the carbon powder is coated by alumina powder in advance, so that the uniform heating is ensured, graphite is prevented from entering Ni, and the high-temperature oxidation of the alloy is prevented;
4) rolling and rolling heat treatment, namely rolling the alloy cast ingot obtained in the step 3) on a cold rolling mill, wherein the pass deformation is 2-5%, and when the rolling deformation reaches 70-90%, carrying out homogenization heat treatment in a muffle furnace at 900-1000 ℃ for 1-3 h until the alloy cast ingot is rolledThen the process is carried out again at 900-1000 ℃ in 1-up toCarrying out homogenization heat treatment for 3h to obtain an alloy bar;
5) drawing the wire, and obtaining the product in the step 4)The alloy bar is drawn into a wire on a wire drawing machine, the deformation of the wire in the drawing pass is 5-10%, and the wire is drawn toThe total deformation of the alloy wire is 85.8-93.3%;
6) heat treatment of the wire finished product, namely the wire obtained in the step 5)The alloy wire is subjected to vacuum annealing treatment for 1-5 h at 300-500 ℃ to obtain the high-strength platinum-based alloy wire which is used as an electrical contact material.
As a preferable technical scheme, the temperature of 1800-2000 ℃ in the step 2) is 1 multiplied by 10-3Smelting in a smelting furnace in Pa vacuum.
As a preferable technical scheme, in the step 1), platinum is rolled into a platinum sheet, and nickel particles and gold particles are wrapped by the platinum sheet to obtain an alloy mixture, so as to prevent nickel and gold from volatilizing to cause quality loss.
As an optimal technical scheme, the mixed material in the step 2) is smelted for 3-4 times, so that the uniformity of alloy components is ensured.
Preferably, in the step 3), the steel plate is placed in a muffle furnace at 900 ℃ for heat preservation for 1h, and then is rapidly taken out and sent to cold water for quenching treatment.
The preparation method of the platinum-based alloy electrical contact material comprises the steps of batching, smelting, homogenizing heat treatment, rolling heat treatment, wire drawing and wire finished product heat treatment.
Due to the adoption of the technical scheme, the high-strength platinum-based electric contact material and the preparation method thereof comprise the following steps: 1) the material comprises, by mass, 1-5% of Au and 1-5% of AuNi and the balance of Pt, wherein the total mass percent of the components is 100 percent, and a platinum sheet, nickel particles and gold particles are respectively weighed; preparing an alloy mixed material; 2) smelting, namely placing the alloy mixture obtained in the step 1) into a crucible of a smelting furnace, vacuumizing the smelting furnace, and obtaining an alloy ingot at the temperature of 1800-2000 ℃; 3) homogenizing heat treatment, namely putting the alloy cast ingot obtained in the step 2) into an alumina crucible, wrapping the alloy cast ingot with alumina powder, covering carbon powder with the coated alloy cast ingot, placing the coated alloy cast ingot in a muffle furnace at 900-1000 ℃ for heat preservation for 1-3 h, and quickly taking out the coated alloy cast ingot and sending the coated alloy cast ingot to cold water for quenching treatment; the carbon powder is coated by alumina powder in advance, so that the uniform heating is ensured, graphite is prevented from entering Ni, and the high-temperature oxidation of the alloy is prevented; 4) rolling and rolling heat treatment, namely rolling the alloy cast ingot obtained in the step 3) on a cold rolling mill, wherein the pass deformation is 2-5%, and when the rolling deformation reaches 70-90%, carrying out homogenization heat treatment in a muffle furnace at 900-1000 ℃ for 1-3 h until the alloy cast ingot is rolledPerforming homogenization heat treatment again at 900-1000 ℃ for 1-3 h when the thickness is mm to obtain an alloy bar; 5) drawing the wire, and obtaining the product in the step 4)The alloy bar is drawn into a wire on a wire drawing machine, the deformation of the wire in the drawing pass is 5-10%, and the wire is drawn toThe total deformation of the alloy wire is 85.8-93.3%; 6) heat treatment of the wire finished product, namely the wire obtained in the step 5)The alloy wire is subjected to vacuum annealing treatment for 1-5 h at 300-500 ℃ to obtain the high-strength platinum-based alloy wire which is used as an electrical contact material.
The invention has the advantages that:
(1) the invention provides a preparation method of a high-strength platinum-based electrical contact material, wherein the tensile strength of a platinum-based alloy wire is 900-1150 MPa, the Vickers hardness is 300-360 HV, the resistivity is 25-27 mu omega-cm, and the comprehensive performance is improved.
(2) After the Au with the content in the invention is added into the alloy, crystal grains are refined, the strength of the alloy is enhanced, the content of the Au is successfully reduced, and the cost for producing the electric contact material is reduced; the trace element Ni with the content of the invention is added, and the precipitation strengthening effect is obtained by utilizing the precipitation of alloy elements, so that the wear resistance of the gold is improved; meanwhile, the resistivity meets the resistivity requirement of the material of the electric brush, and is stable, so that the comprehensive performance of the alloy is effectively improved.
(3) The platinum-based electric contact material provided by the invention can be widely used for brush wires in a conductive slip ring, and has the advantages of uniform distribution of trace elements, excellent processing performance, high yield and good corrosion resistance.
(4) On the premise of ensuring good conductivity, the strength and hardness are improved, the wear resistance is improved, and the performance is obviously improved.
(5) Compared with AuNi9 alloy electric contact material in the prior art, the invention reduces cost and has obvious economic value.
Detailed Description
In order to make up for the above deficiencies, the present invention provides a high strength platinum-based electrical contact material and a method for preparing the same to solve the above problems in the background art.
A high-strength platinum-based electrical contact material comprises the following components in percentage by mass:
Au 1~5%;
Ni 1~5%;
the balance being Pt.
The Au is gold particles; the Ni is nickel particles; the Pt is a platinum sheet.
The invention also discloses a method for preparing the high-strength platinum-based electric contact material, which comprises the following steps:
1) proportioning, namely, by mass, 1-5% of Au, 1-5% of Ni and the balance of Pt, wherein the total mass of the components is 100%, and respectively weighing platinum sheets, nickel particles and gold particles; preparing an alloy mixed material;
2) smelting, namely placing the alloy mixture obtained in the step 1) into a crucible of a smelting furnace, vacuumizing the smelting furnace, and obtaining an alloy ingot at the temperature of 1800-2000 ℃;
3) homogenizing heat treatment, namely putting the alloy cast ingot obtained in the step 2) into an alumina crucible, wrapping the alloy cast ingot with alumina powder, covering carbon powder with the coated alloy cast ingot, placing the coated alloy cast ingot in a muffle furnace at 900-1000 ℃ for heat preservation for 1-3 h, and quickly taking out the coated alloy cast ingot and sending the coated alloy cast ingot to cold water for quenching treatment; the carbon powder is coated by alumina powder in advance, so that the uniform heating is ensured, graphite is prevented from entering Ni, and the high-temperature oxidation of the alloy is prevented;
4) rolling and rolling heat treatment, namely rolling the alloy cast ingot obtained in the step 3) on a cold rolling mill, wherein the pass deformation is 2-5%, and when the rolling deformation reaches 70-90%, carrying out homogenization heat treatment in a muffle furnace at 900-1000 ℃ for 1-3 h until the alloy cast ingot is rolledThen carrying out homogenization heat treatment again at 900-1000 ℃ for 1-3 h to obtain an alloy bar;
5) drawing the wire, and obtaining the product in the step 4)The alloy bar is drawn into a wire on a wire drawing machine, the deformation of the wire in the drawing pass is 5-10%, and the wire is drawn toThe total deformation of the alloy wire is 85.8-93.3%;
6) heat treatment of the wire finished product, namely the wire obtained in the step 5)The alloy wire is subjected to vacuum annealing treatment for 1-5 h at 300-500 ℃ to obtain the high-strength platinum-based alloy wire which is used as an electrical contact material.
The temperature of 1800-2000 ℃ in the step 2) is 1 multiplied by 10-3Smelting in a smelting furnace in Pa vacuum.
And (2) wrapping the nickel particles and the gold particles by using a platinum sheet in the step 1) to obtain an alloy mixed material, so as to prevent the nickel and the gold from volatilizing to cause quality loss.
And smelting the mixed material in the step 2) for 3-4 times to ensure that the alloy components are uniform.
And in the step 3), the steel plate is placed in a muffle furnace at 900 ℃ for heat preservation for 1h, and then is rapidly taken out and sent to cold water for quenching treatment.
The preparation method of the platinum-based alloy electrical contact material comprises the steps of batching, smelting, homogenizing heat treatment, rolling heat treatment, wire drawing and wire finished product heat treatment.
In order to make the technical means, the creation characteristics, the achievement purposes and the effects of the invention easy to understand, the invention is further described with the specific embodiments.
Example 1
The platinum-based electrical contact material is prepared according to the following steps:
(1) according to the Pt: 93%, Au: 2%, Ni: 5 percent of the mixture is prepared, and the gold particles and the nickel particles are wrapped by platinum sheets.
(2) And (2) putting the alloy mixture obtained in the step (1) into a vacuum smelting furnace for smelting.
(3) And (3) placing the alloy ingot obtained in the step (2) in an alumina crucible, wrapping the alloy ingot with alumina powder in advance, covering a layer of carbon powder, and placing the alloy ingot in a muffle furnace for homogenization heat treatment at 900 ℃ for 1 hour.
(4) And (4) cold rolling the alloy cast ingot subjected to homogenization treatment in the step (3) on a cold rolling mill, wherein homogenization treatment is carried out when the deformation reaches 70% in the rolling process, the temperature is 900 ℃, and the time is 1 h. Until it is rolledThe rods were again homogenized at 900 ℃ for 1 h.
(5) Subjecting the product obtained in step (4)The alloy bar is drawn on a wire drawing machine, and the deformation of the wire reaches 89.9 in the wire processing process% of the total weight of the alloy wire is treated by vacuum annealing at 300 ℃ for 1h to obtain the platinum-based alloy wire.
The platinum alloy wire obtained in example 1 had a tensile strength of 975MPa, a microhardness of 332HV, and a resistivity of 26.6. mu. omega. cm.
Example 2
The platinum-based electrical contact material is prepared according to the following steps:
(1) according to the Pt: 93%, Au: 2%, Ni: 5 percent of the mixture is prepared, and the gold particles and the nickel particles are wrapped by platinum sheets.
(2) And (2) putting the alloy mixture obtained in the step (1) into a vacuum smelting furnace for smelting.
(3) And (3) placing the alloy ingot obtained in the step (2) in an alumina crucible, wrapping the alloy ingot with alumina powder in advance, covering a layer of carbon powder, and placing the alloy ingot in a muffle furnace for homogenization heat treatment at 900 ℃ for 1 hour.
(4) And (4) cold rolling the alloy cast ingot subjected to homogenization treatment in the step (3) on a cold rolling mill, wherein homogenization treatment is carried out when the deformation reaches 70% in the rolling process, the temperature is 900 ℃, and the time is 1 h. Until it is rolledThe rods were again homogenized at 900 ℃ for 1 h.
(5) Subjecting the product obtained in step (4)The alloy bar is drawn on a wire drawing machine, and the platinum-based alloy wire is obtained by vacuum annealing treatment at 400 ℃ for 1h when the deformation of the wire reaches 89.9% in the wire processing process.
The platinum alloy wire obtained in example 2 had a tensile strength of 1008MPa, a microhardness of 348HV, and a resistivity of 25.8. mu. omega. cm.
Example 3
The platinum-based electrical contact material is prepared according to the following steps:
(1) according to the Pt: 90%, Au 5%, Ni: 5 percent of the mixture is prepared, and the gold particles and the nickel particles are wrapped by platinum sheets.
(2) And (2) putting the alloy mixture obtained in the step (1) into a vacuum smelting furnace for smelting.
(3) And (3) placing the alloy ingot obtained in the step (2) in an alumina crucible, wrapping the alloy ingot with alumina powder in advance, covering a layer of carbon powder, and placing the alloy ingot in a muffle furnace for homogenization heat treatment at 900 ℃ for 1 hour.
(4) And (4) cold rolling the alloy cast ingot subjected to homogenization treatment in the step (3) on a cold rolling mill, wherein homogenization treatment is carried out when the deformation reaches 70% in the rolling process, the temperature is 900 ℃, and the time is 1 h. Until it is rolledThe rods were again homogenized at 900 ℃ for 1 h.
(5) Subjecting the product obtained in step (4)The alloy bar is drawn on a wire drawing machine, and the platinum-based alloy wire is obtained by vacuum annealing treatment at 400 ℃ for 1h when the deformation of the wire reaches 89.9% in the wire processing process.
The platinum alloy wire obtained in example 3 had a tensile strength of 1117MPa, a microhardness of 361HV, and a resistivity of 26.7. mu. omega. cm.
Experimental example:
the platinum alloy wires of examples 1, 2 and 3 of the present invention were compared with those of control group 1, control group 2 and control group 3, respectively
The comparison group 1 is AuNi9 alloy according to the national military standard GJB 947A-2003 precious metal and the specification of alloy wires, wires and bars thereof;
control 2 was a platinum-based alloy prepared according to the conventional method;
the conventional method for preparing platinum-based alloy is as follows: 1) 1X 10 at 1800-2000 deg.C-3Vacuum smelting under Pa; 2) mechanically cold-treating the alloy ingot obtained in the step 1) to prepare a sheet, a bar or a wire, and when the deformation reaches 50-60% in the mechanical cold treatment process, performing heat treatment at 600-1300 ℃ to obtain the sheet, the bar or the wire for 0.5-1.0 h, and performing subsequent cold processing technology to obtain a finished product;
control 3 was a gold-based alloy prepared according to the conventional method;
the conventional preparation method of gold-based alloy is as follows: the alloy comprises, by mass, 20-25% of Ag, 2-5% of Ni, 1-3% of Cu, 0.01-0.3% of Sm and the balance of Au; the preparation method of the gold-based alloy electrical contact material comprises the steps of smelting, casting molding, rolling heat treatment, drawing heat treatment and wire finished product heat treatment, and the gold-based alloy wire is prepared.
The example group of the invention is compared with the control group, and the invention is found to be beneficial to two points: (1) on the premise of ensuring good conductivity, the strength and hardness are improved, the wear resistance is improved, and the performance is obviously improved; (2) the cost is reduced, and the method has obvious economic value (in recent years, the price of gold is continuously increased, the price exceeds the price of platinum, and the preparation cost of gold base is continuously improved).
The foregoing shows and describes the general principles, essential features, and advantages of the invention. It will be understood by those skilled in the art that the present invention is not limited to the embodiments described above, which are described in the specification and illustrated only to illustrate the principle of the present invention, but that various changes and modifications may be made therein without departing from the spirit and scope of the present invention, which fall within the scope of the invention as claimed. The scope of the invention is defined by the appended claims and equivalents thereof.